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ABSTRACT

Understanding solar turbulent convection and its influence on differential rotation has been a chal-

lenge over the past two decades. Current models often overestimate giant convection cells amplitude,

leading to an effective Rossby number too large and a shift towards an anti-solar rotation regime. This

Convective Conundrum, underscores the need for improved comprehension of solar convective dynam-

ics. We propose a numerical experiment in the parameter space that controls Ro while increasing the

Reynolds number (Re) and maintaining solar parameters. By controlling the Nusselt number (Nu), we

limit the energy transport by convection while reducing viscous dissipation. This approach enabled us

to construct a Sun-like rotating model (SBR97n035) with strong turbulence (Re ∼ 800) that exhibits

prograde equatorial rotation and aligns with observational data from helioseismology. We compare

this model with an anti-solar rotating counterpart, and provide an in-depth spectral analysis to in-

vestigate the changes in convective dynamics. We also find the appearance of vorticity rings near the

poles, which existence on the Sun could be probed in the future. The Sun-like model shows reduced

buoyancy over the spectrum, as well as an extended quasi-geostrophic equilibrium towards smaller

scales. This promotes a Coriolis-Inertia (CI) balance rather than a Coriolis-Inertia-Archimedes (CIA)

balance, in order to favor the establishment of a prograde equator. The presence of convective columns

in the bulk of the convection zone, with limited surface manifestations, also hints at such structures

potentially occurring in the Sun.

Keywords: Sun: interior and rotation — stars: solar-type, kinematics and dynamics — turbulence —

convection — hydrodynamics — methods: numerical

1. INTRODUCTION

1.1. Models and observations of global solar convection

and its associated differential rotation

The solar convection zone (CZ) is differentially rotat-

ing, meaning that all latitudes at the surface do not

rotate at the same rate. In particular for the Sun, the

equatorial region rotates faster than the polar regions,

and more specifically, the former (respectively latter)

is prograde (respect. retrograde), meaning that it ro-

tates faster (respect. slower) than the mean solar rota-
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tion rate Ω⊙. This was first discovered centuries ago by

tracking surface magnetic activity (Scheiner 1630; Car-

rington 1860), and then characterized in deeper layers

with helioseismology (Thompson et al. 1996; Howe et al.

2011) as illustrated in the left panel of Figure 1. This

profile transits towards solid-body rotation when reach-

ing the radiative zone (RZ) around 0.7 R⊙, where the

Schwarzschild criterion (Schwarzschild 1906) does not

hold (see e.g. Brummell et al. 1998; Brun et al. 2011).

The transition region separating the CZ from the RZ is

referred to as the tachocline due to the strong velocity

gradients present (Spiegel & Zahn 1992; Strugarek et al.

2023).

Studies of turbulent rotating bodies were historically

performed with the complementary effort of linear anal-
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Figure 1. Northern meridional plane (top) and radial profiles (bottom) of the angular velocity in nHz, inverted from observations
of the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory satellite, from 0.67 R⊙ to the solar surface
(left, Larson & Schou 2018). Same quantity taken from the AB3 and AS1 solar convective envelope models, which ran with the
ASH code (respectively middle, Miesch et al. 2006, and right, Emeriau-Viard 2017). Different color markers indicate in the top
panels the selected latitudes for the bottom ones. The dashed line shows the bottom of AB3 and AS1 models, while dot-dashed
and dotted lines stand for the top of AB3 (0.965 R⊙) and AS1 (0.99 R⊙) respectively.

ysis of convection in a rotating sphere (Chandrasekhar

1961; Roberts 1968; Busse 1970) and numerical simula-

tions using non-linear global models (Gilman 1975, 1977,

1979). The incorporation of realistic solar stratification

(Christensen-Dalsgaard et al. 1996) and the anelastic

approximation in numerical models (Gilman & Glatz-

maier 1981; Glatzmaier & Gilman 1982) have histori-

cally highlighted the role of turbulent convection in re-

distributing the angular momentum and enabled a more

faithful reproduction of the solar rotation profile in nu-

merical simulations, as illustrated in the middle panel of

Figure 1 with the historical AB3 case (Miesch et al. 2000;

Brun & Toomre 2002; Miesch et al. 2006). However, the

spatial resolutions of such global models were moder-

ate and dynamical characteristic time of convection were

relatively long in comparison to what is achieved in the

solar turbulence regime.

In the relatively large parameter space explored by

numerical modelling so far (Hindman et al. 2020; Brun

et al. 2022), the morphology of large-scale flows has been

shown to be strongly dependent on the Rossby number

Ro, defined as the ratio between the amplitude of non-

linear advection and that of the rotational constraint

by the Coriolis force (see also Brun & Browning 2017

and Hotta et al. 2023 for reviews). In particular, global

models experience a latitudinal reversal of the differen-

tial rotation (DR) profile when Ro exceeds a value of

the order of unity, leading to the establishment of the

so-called anti-solar rotation profile, where polar regions

rotate faster than the equator (Gilman 1977; Gastine

et al. 2014; Brun et al. 2017; Hotta et al. 2022; Käpylä

2023a). The desire to use the constant improvement

in computing power to get closer to the solar regime is

now leading the community to increase the degree of tur-

bulence in global convective simulations, quantified by

the Reynolds number Re. This is generally achieved by

increasing spatial resolution, along with decreasing dif-

fusive coefficients, in order to resolve the turbulent dy-
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namics on a larger range of convective scales (see for in-

stance Miesch et al. 2008). However, it also results in an

increase of the amplitude of convective velocities, which

then increases the Rossby number Ro so much that the

vast majority of current turbulent global solar models

eventually present an anti-solar DR profile. We illus-

trate such an example with the AS1 model (Emeriau-

Viard 2017) in the right panels of Figure 1, which shows

a differential rotation with a slow equator and a fast

pole, in contradiction with helioseismic constraints.

1.2. Convective conundrum context

This inability to reproduce the solar DR in the vast

majority of global solar turbulent simulations is part of

a paradox known as the convective conundrum (O’Mara

et al. 2016; Hotta et al. 2023). More specifically, the loss

of the prograde equator when aiming at getting closer to

the solar regime, now questions which scales and regime

are important for the establishment of the solar-like ro-

tation profile.

The energy distribution among the turbulent convec-

tive spectrum can be inferred by decomposing velocity

maps spectrally. This is straightforward in numerical

models where velocities are known everywhere. How-

ever, current global modeling does not include the solar

surface, as the gap in resolution will be too wide between

the solar radius and the convective granulation devel-

oped at the surface. Nevertheless, velocities can also be

probed few Mm under the surface of the Sun through

helioseismic inversions and decomposed spectrally. We

thus gather in Figure 2 convective spectra for 0.96 R⊙,

using dashed curves for observations (see Proxauf 2021,

hereafter P21, for details about them) and solid lines for

numerical models (previous AB3 and AS1 models are in

green and orange respectively, see Miesch et al. 2006 and

Emeriau-Viard 2017).

Despite the convergence of various observations

around ℓ ∼ 50, observational constraints diverge and

span a large range of amplitudes at larger-scales. Indeed,

the revision of Hanasoge et al. (2012) time-distance data

(HDS12, dashed pink) reports low amplitudes, which

can be down to two orders of magnitude with respect

to independent time-distance analysis from Greer et al.

(2015) (GHFT15, dashed magenta). Both constraints

are currently questioned in the observational commu-

nity: on one hand the 3D-inversion of GHFT15 could

over-estimate the signal, and on the other hand the

noise model of (HDS12) could under-estimate it (see also

Birch et al. in prep). In that sense, the amplitudes of

the largest solar convection scales at 0.96 R⊙ and below

are still debated.
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Figure 2. Left : Comparison of the non-axisymmetric part
of toroidal kinetic spectra per multiplet Eϕ at 0.96 R⊙, de-
fined following the definition of Gizon & Birch (2012). Solid,
and dashed lines represent data from numerical simulations
and observations, respectively. Green and orange curves are
taken from global anelastic models AB3 and AS1 respec-
tively (see Figure 1). The gray line represents the highly
resolved global model from Hotta et al. (2022), consider-
ing magnetic field and compressible effects. Pink and ma-
genta dashed lines show deep-focusing time-distance helio-
seismic measurements (Hanasoge et al. 2012) and multi-
ridge fitting ring-diagram analysis (Greer et al. 2015), both
revised by Proxauf (2021). These measurements are con-
sidered today as an upper and lower bound from observa-
tions. The weighted degree ℓpond =

∑
Eϕ(ℓ) ∗ ℓ/

∑
Eϕ(ℓ)

is 14, 35 and 143 for global simulations AB3, AS1 and
HKS22 spectra, respectively. Similarly, the integral scale
Lint =

∑
Eϕ(ℓ)∗r/

√
(ℓ(ℓ+1))/

∑
Eϕ(ℓ) is 9.8, 7.5 and 2.9% of

the solar radius, respectively, which corresponds to ℓint = 9,
12 and 33. A dotted line representing a theoretical Kol-
mogorov trend (ℓ−5/3) is indicated for comparison.

Numerical modeling of the largest scales in global

models are then a powerful tool to investigate current

observational disagreements. When adding to Figure 2

spectra from numerical simulations (solid green and or-

ange lines, coming from the solar-like AB3 and anti-

solar AS1 models respectively), we see they are close to

amplitudes observed by GHFT15, but are most likely

also over-estimating large-scale amplitudes, no matter

if it develops a solar-like (green line) or anti-solar DR

profile (orange line). We also add data from the re-

cent work on global modelling by Hotta et al. (2022)

(HKS22, black solid line), where a solar-like DR profile

is achieved in an unprecedented high turbulence regime.
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Earlier work indeed already underlined that the mag-

netism can play an important role for the construction

of the differential profile (Fan & Fang 2014). However,

its role stays currently unclear, as different conclusions

are drawn from the different studies (see also Warnecke

et al. 2024). Hence, we will aim here at finding if sustain-

ing a Sun-like DR is possible at large turbulence degree

without invoking magnetic effects.

This overall mismatch between various solar helioseis-

mic inversions, and also with global convection simula-

tions, is inherent to the convective conundrum and ques-

tions their role for the construction of the solar-like DR.

On one hand, observational inputs show that equator-

ward angular-momentum transport is likely favored by

giant-cells dynamics (Hathaway et al. 2013). These large

scales were solely resolved in earlier solar-like rotating

models (Miesch et al. 2006, see Figure 1), which partly

explains why they could sustain a prograde equator. But

on the other hand, numerical modeling illustrates that

small-scale dynamics also plays an important role, as

sustaining a prograde equator becomes challenging when

the range of scales we resolve is extended. This leads

to the following question: what favors the construc-

tion of a solar-like DR? Regarding this aspect, several

theories are currently debated, and mainly two mecha-

nism are advocated to ensure an equatorward angular-

momentum transport: (i) Reynolds stress transport by

inertial modes (Brun 2004; Rast 2020) and (ii) Maxwell

stress transport via the Punching-ball effect (HKS22).

Nevertheless, all agree on the importance of the rota-

tional constraint through the Coriolis force in the dy-

namics (see also Käpylä et al. 2011b; Mori & Hotta

2023). It is therefore important to understand and

model the correct solar-like force and power balances

along the convective turbulence cascade. The net en-

ergy transported by convection in 3D global models has

not been much questioned so far, so that the Nusselt

number was mostly left as a free parameter. We here

propose to control it, in order to recover the solar dy-

namics despite the limited range of scales accessible with

the current computational power.

1.3. Path approach

Recently, the geophysics community has proposed to

follow a path in parameter space in order to obtain

more realistic geodynamo simulations that are closer to

the Earth’s state (Aubert et al. 2017). They have to

some extent succeeded in doing so by rescaling strategi-

cally the different diffusivities of the problem, in order

to keep the model tractable, while conserving the im-

portant force balances happening in the Earth’s core

(Aubert & Gillet 2021). Independently, we have also

designed in this work a numerical path in order to re-

spect what we believe to be the main force balances,

as an attempt to build highly turbulent models of solar

convection and large-scale flows.

In that sense, we propose a way to increase the degree

of turbulence of the solar convection simulation while re-

taining the key forces balance, e.g. that deep convection

still feels the influence of rotation (i.e. that the dynam-

ics are characterized by a Rossby number smaller than

one, Matt et al. 2011; Gastine et al. 2014; Brun et al.

2017). In that sense, we have chosen to follow a numeri-

cal path that maintains the Rossby number Ro constant

while increasing the Reynolds number Re. These two

numbers can easily be defined by comparing the follow-

ing ratio of time scales. The Rossby number is the ratio

of the rotation timescale τΩ = 1/(2Ω) and the advec-

tive timescale τu = ℓc/u with ℓc a characteristic convec-

tion scale and u the convective speed, i.e. Ro = τΩ/τu.

Likewise, the Reynolds number is the ratio of the in-

ertia timescale to the viscous diffusion one τν = ℓ2c/ν,

i.e. Re = τν/τu. So, in order to increase Re, we have

to ensure that τν increases faster than any increase in

τu. This is of course what most simulation attempts to

model the Sun have been doing (Miesch et al. 2008).

However, increasing τν has an indirect consequence, it

also impacts u and hence τu.

Stratified turbulent convection experiments show that

kinetic energy (KE) increases as the Rayleigh (Ra) and

Reynolds (Re) numbers grow (see for instance Tables

4 to 7 in Featherstone & Hindman 2016a), eventu-

ally reaching an asymptote known as the diffusion-free

regime. We must consider this when moving toward

more turbulent regimes while maintaining a prograde

equator. Typically, outside the diffusion-free regime,

u ∝ ν−α with α > 0. Notably, α depends on the viscos-

ity profile and density contrast Nρ (Currie & Browning

2017; Lance et al. 2024).

Since we aim to maintain Ro = τΩ/τu = const, one

could then adjust τΩ to decrease it proportionally to the

aforementioned τu change. However, the solar rotation

rate Ω⊙ is well-known, so ideally τΩ should remain con-

stant. Some studies have simulated in that way faster

rotating Suns (Brown et al. 2008; Emeriau-Viard 2017;

Strugarek et al. 2017; Warnecke et al. 2024), but instead

we propose here to adjust the convective driving, i.e. to

offset the decrease of τu due to the increase of τν , in

order to keep Ro constant.

In hydrodynamical convection setups, the convective

velocity u is mainly controlled by thermal forcing. One

straightforward way to reduce it is to reduce the solar

luminosity L⊙ (as in Hotta et al. 2014; Bekki et al. 2022,

reduced by a factor of 18 and 20, respectively), but since
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L⊙ is an observational constraint, we prefer to maintain

it. We can then control the amount of energy carried

by convection. Classical mixing-length theory (MLT,

Böhm-Vitense 1958) assumes that the convective lumi-

nosity Lc ∝ ⟨v′T ′⟩ equals or exceeds L⊙ to compensate

for the inward kinetic energy luminosity LKE ∝ ρv3 de-

veloping in turbulent stratified setups (Cattaneo et al.

1991; Miesch et al. 2008), which yields Lc ∝ LKE ∝ ρv3.

The Nusselt number Nu = (Ldiff + Lc)/Ldiff mea-

sures the ratio of total energy transport (diffusion and

convection) to that by diffusion alone. Most solar con-

vection simulations have assumed large Nu and resulted

in anti-solar rotation states due to excessive buoyancy

driving at large convection scales. To compensate for

the increase of u due to the decreased viscosity (higher

Re), we can then control Nu such that we lower the

energy the convection needs to transport, while keeping

L⊙ (≃ Ldiff + Lc + LKE , to first order in the CZ). In

other words, assuming u ∝ L
1/3
c ν−α, there exists a Nu

that allows u to remain constant while increasing Re.

This is the parameter space path we propose.

In this comparative study, we present a numerical ex-

periment achieving high turbulence in a global rotat-

ing solar convection model, while maintaining a solar-

like differential rotation profile and convective velocity

comparable to solar observations. We also compare this

model with an anti-solar rotating control case, in or-

der to investigate changes in convective dynamics and

their implications. Section 2 presents the construction

of our simulations. We describe their overall dynamics

in Section 3 and discuss our numerical experiment in its

solar context in Section 4. In Section 5, we perform an

in-depth spectral analysis to understand the balances

achieved along the convective turbulent cascade. We

finally discuss possible improvements and prospects in

Section 6, before concluding in Section 7.

2. METHOD & MODELS

Simulations performed in this study are computed

with the ASH code, described with the set-up and

equations in Appendix A. We solve the hydrodynamics

equations assuming the anelastic approximation, un-

der which the thermodynamic variables are linearized

around a spherically symmetric reference state x̄, where

x̄ can be the density ρ̄(r, t), pressure P̄ (r, t), tempera-

ture T̄ (r, t) and specific entropy s̄(r, t). Fluctuations x

around this reference state x̄ are then denoted by ρ, P ,

T and S, such as xtot = x̄(r, t) + x(r, θ, ϕ, t).

2.1. Energy transport

In order to determine and quantify the different pro-

cesses carrying the energy throughout the stellar inte-

rior, we consider here the conservation of the total en-

ergy density Etot = Ek + Eint. The conservation of

kinetic energy density Ek = ρ̄v2/2 can be obtained with

the scalar product between v and the anelastic momen-

tum Equation A2, while conservation of internal energy

Eint = ρ̄T̄ s is directly accessible with the energy evolu-

tion Equation A3. Combining both gives

∂(Ek + Es)

∂t
= ∇ ·F = −∇ ·

[
v
( ρ̄v · v

2

)
− v ·D

+cP ρ̄Tv − q + ρ̄vQ̄
]
,(1)

(see DeRosa 2001 or Miesch 2005 for the detailed deriva-

tion) where F is the total flux transported, D the vis-

cous stress tensor, q the energy flux, and Q̄ the reference

state heating, defined such as

Dij = 2ρ̄ν

[
eij −

1

3
∇ · vδij

]
, (2)

q=κradρ̄cp∇(T̄ + T )

+κρ̄T̄∇(s)
∣∣∣
l>0

+ κ0ρ̄T̄
∂(s̄+ ⟨s⟩)

∂r

∣∣∣
l=0

êr, (3)

∇ · Q̄ =
dQ̄

dr
êr = T̄

ds̄

dr
êr, (4)

where ⟨ ⟩ denotes the spherical average. The energy

flux q is expressed, respectively from left to right, as

the sum of the radiative flux, entropy conductive flux

and the unresolved flux related to the sub-grid treat-

ment of our LES-SGS approach. Diffusive coefficients ν

and κ are respectively the kinematic viscosity and ther-

mal diffusion. They represent the diffusive transport of

momentum and heat by microscopic and turbulent in-

teractions that are not resolved by the simulation (see

Appendix A.2 for their detailed parametrization). We

also note κ0 the effective diffusion coefficient applied on

the spherically symmetrical component (l = 0,m = 0)

of the entropy gradient. It parametrizes with a diffusive

approach a net radial flux representing the macroscopic

transport by unresolved flows near the surface (Gilman

& Glatzmaier 1981; Clune et al. 1999; Brun & Toomre

2002). Finally, κrad is the radiative diffusion coefficient,

parametrizing radiative transfer in the stellar interior.

Taking the horizontal average ofF in Equation 1 gives

the radial flux balance, ensuring the transport of the

stellar luminosity such as

L∗(r)

4πr2
= Fke + Fvis + Fen + Frad + Firr + Fsb, (5)
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Figure 3. Flux balance of AS1 model, quantifying the dif-
ferent processes contributing to the transport of the energy
through the convective envelope. Kinetic, enthalpy, radia-
tive, entropy, viscous flux and the total balance correspond
respectively to dark, blue, green, red, cyan solid lines and the
dark line with dots (spaced every 100 grid cells). A dashed
line indicates the origin of the y-axis.

where the various fluxes are expressed as

Fke =
1

2
ρ̄v2vr, (6)

Fvis = −v ·D|r, (7)

Fen = ρ̄cP vrT , (8)

Frad = −κradρ̄cP
∂(T̄ + T )

∂r

∣∣∣
l=0

, (9)

Firr = −κ0ρ̄T̄
∂(s̄+ s)

∂r

∣∣∣
l=0

, (10)

Fsb = ρ̄ vr Q̄, (11)

with fluxes from the kinetic energy (Fke), the enthalpy

flux (Fen), the radiative flux (Frad), the viscous flux

(Fvis), the one transported by unresolved motions (Firr,

Brun et al. 2004) and the background stratification heat-

ing flux (Fsb). We recall that the system considered is

closed, preventing net motion of matter through a spher-

ical surface once the convectively unstable system is re-

laxed, which leads to vr = 0 = Fsb for the simulations

considered in this paper.

We illustrate a classical radial energy balance with the

AS1 model (Emeriau-Viard 2017) in Figure 3. First,

transport by radiation carries all the energy from the

radiative interior, up to the base of the CZ, and then

decreases rapidly with height. In the convective enve-

lope, most of the energy is then transported outward

by convection, as evidenced by the rise in enthalpy flux

(blue curve). Consequently, a negative kinetic energy

flux (dark solid line) is generated by the convective insta-

bility, corresponding to inward transport dominated by

denser and sinking convective plumes. When reaching

the surface, the impenetrable wall boundary condition

cancels out convective motion and hence enthalpy flux.

At this location, convection should however continue to

transport the energy up to the solar surface, but char-

acteristic scales would then become so small that their

resolution would become too expensive numerically for

the scope of this study. We therefore parametrize them

with Firr (red curve), which is expressed as a diffusive

transport and is controlled by the coefficient κ0. Finally,

a radial energy equilibrium is reached when the total

contribution (black curve with round markers) of the

different processes transports the luminosity L∗ through

the convection zone (CZ) until the surface.

2.2. Nusselt number: how much energy is carried by

convection?

We can now introduce the dimensionless Nusselt num-

ber Nu, which compares the respective contribution of

enthalpy and radiation/conduction in the transport of

the internal energy. In stellar interiors, this can be ex-

pressed as

Nu =
Frad + Fen

Frad
, (12)

giving usually Nu ≃ ∇ad/∇rad in adiabatic convection

zones (Maeder 2009). This number decreases as en-

thalpy transport by convection diminishes, until it tends

towards 1 when energy transport is entirely ensured by

radiation.

As we saw in Figure 3, the energy transport in the

CZ of a classic global solar models is dominated by the

enthalpy flux, with a Nusselt number Nu ∼ 20 in the

middle of the CZ. However, we also saw that such models

fail in reproducing the solar differential rotation profile

when their Reynolds number is increased. This is likely

due to a high Rossby number value, resulting in high

convective velocities. Therefore, we propose here to vol-

untary limit them, while conserving a solar rotation rate

and luminosity, and while increasing the turbulence de-

gree by decreasing the viscous and thermal diffusions.

For that purpose, we propose here to limit the growth

of the amplitude of convective flow by controlling the

Nusselt number Nu.

The ASH code explicitly resolves convection by en-

abling the convective instability to develop around a

reference state. Hence, limiting the amount of energy

the convection has to carry, will limit amplitudes of its

flows. In the continuity of previous studies (Jones et al.

2011; Käpylä et al. 2017, 2019), this can be done by in-

creasing the net flux already transported by radiation,

which is parametrized with κrad in our model and will

be modified in both models we introduce in the next
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Section. But we could alternatively use κ0 to do so. It

is the sum of diffusion processes that matters.

2.3. Numerical set-up

Both models we present here are similar to AS1 in

terms of solar structure (see Appendix A.2). As we

want to focus on bulk-convection dynamics, we improve

boundaries modeling by adding a radiative interior to

their base and by extending the domain closer to the

solar surface. The number of radial mesh points is in-

creased to Nr = 2000, spanning from 50 to 99.14% of

the solar radius. This allows to significantly reduce am-

plitudes of explicit diffusions ν and κ, while maintaining

a similar Prandtl number Pr = 1/4, in order to resolve

small-scale dynamics. We name these new models with

the notation SBR*n#, * referring to the percentage of

the radiative diffusive flux contribution in the balance

of Equation 5, and # referring to the viscosity value at

the top of the numerical domain. The higher Frad is,

the lower v will be for a given dissipation rate. Recent

studies have emphasized that the degree of turbulence

can significantly impact system dynamics (Hotta et al.

2022; Warnecke et al. 2023), so we aim at constructing

two models with similar turbulence regimes, which is

quantified with the Reynolds number Re = ṽ∆conv/ν

where ṽ is the rms velocity and ∆conv the depth of

the modelled CZ. To this end, we set ν = 3.5 × 1011

and 1.0 × 1012 cm2s−1 at the top of SBR97n035 and

SBR50n1 numerical domains respectively, and set κrad
profiles in order to obtain enhanced Frad. After imple-

menting these background profiles and a realistic strat-

ification (see Appendix A.2 for more details), a random

3D fluctuating entropy field is introduced to trigger the

convective instability since ds
dr < 0 in the CZ.

After a linear phase of exponential growth, the non-

linear convective instability saturates in terms of energy

by redistributing the entropy in the CZ and yields to

Rayleigh numbers Ra = 2.051 × 107 and 5.81 × 106

for SBR97n035 and SBR50n1 respectively. These values

have to be above a critical Rayleigh value Rac to make

energy transport by convection effective, given the dis-

sipation in our models. In order to quantify the level

of supercriticality Ra ∗ /Rac, we compute the modified

Rayleigh number Ra∗ defined in Takehiro et al. (2020),

estimate the critical value by scaling from their results

(see Appendix C) and list them in column 8 of Table 1.

All models are supercritical, especially the two new mod-

els (SBR97n035 and SBR50n1) where Ra/Rac exceeds

103. This ensures the development of the convective in-

stability is not close to a marginal state and thus domi-

nates diffusive processes.

3. OVERVIEW OF THE MODELS AND THEIR

DYNAMICS

3.1. Flux balance

The radial transport of energy reaches an equilibrium

after several convective overturning times and leads to

the dynamics quantified in Table 1 and illustrated in Fig-

ure 4. This radial balance is quantified with the differ-

ent fluxes (5) in the top panels. The left-one illustrates

their balance in SBR97n035, where Frad is now the main

flux, carrying 97% of the luminosity into the CZ (green

curve). On the right panel (model SR50n1), Frad carries

50% of the luminosity (green curve). Both unresolved

flux Fed (red) have been identically constrained as close

as possible to the surface. Convective instability has

developed to complement the net transport of luminos-

ity, and is quantified with the enthalpy flux (blue). The

peak at 0.97 R⊙ in the model SBR97n035 has been sig-

nificantly damped, as anticipated, decreasing to 7% of

the solar luminosity. Consequently, the kinetic energy

flux has also reduced, corresponding to 4% of the solar

luminosity. On the right panel, the enthalpy transport

in SBR50n1 is higher, with a similar peak approaching

100% of the energy transport, and significantly balanced

by a negative kinetic flux, coming from strong downward

convective plumes. We note the presence of a negative

enthalpy flux associated with the overshooting of these

plumes, penetrating the top of the radiative interior.

Both the dampening of convective velocities and the

stronger rotational constraint (see Section 3.3) limit the

amplitude of this convective overshoot in SBR97n035.

In the case of SBR50n1, this requires some adjustment

of radiative diffusivity near the base of the convective

envelope to balance it and ensure the transport of the

whole luminosity.

3.2. Differential rotation profiles

The Nusselt number Nu in the canonical model AS1

has a value of 25.89. By the design of our experi-

ments, it has been decreased to 2.45 and 1.04 in mod-

els SBR50n1 and SBR97n035 respectively. However,

the Reynolds number has significantly increased in both

models, reaching 860 and 811 respectively in the mid-

dle of the CZ (see Table 1). Nevertheless, we have kept

SBR97n035 in a Rossby number regime that ensures the

establishment of a solar-type differential rotation profile

with a fast equator. We illustrate it on the bottom-left

panel of Figure 4 and measure a latitudinal surface con-

trast of ∆Ω = 130 nHz between the equator and 60°
latitude. Despite a similar turbulence degree, SBR50n1

has gone into an anti-solar differential rotation regime

(bottom-right panel), and is experiencing a large lati-

tudinal rotation contrast ∆Ω = −320. This is due to
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Name ∆Ω τc Nu Frad Rof Re Ta Ra Ra∗/Rac

(nHz) (days) (Ftot) (106) (104)

AS1 -130 22 25.89 0.07 2.53 205 4.4 35.7 97

SBR97n035 106 87 1.04 0.97 1.49 811 1103.9 2050.8 1611

SBR50n1 -320 28 2.45 0.50 4.01 860 135.2 581.1 3630

Table 1. Global parameters of the 3 solar models. From the left, we list the name of the model and the surface latitudinal
DR contrast between the equator and the 60° latitude. Then come the convective turnover time τc = ∆conv/ṽ, the Nusselt
number Nu = (Frad + Fen)/Frad, the radiative part of the flux Frad/Ftot, the fluid Rossby Rof = |∇ × v|/(2Ω), Reynolds
Re = ṽ∆conv/ν, Taylor Ta = 4Ω2

∗∆
4
conv/ν

2, and Rayleigh number Ra = −(∂ρ̄/∂S̄)(∂Stot/∂r)g∆
4
conv/(ρ̄νκ), evaluated at the

middle of the convective zone, and with the thickness ∆conv = rtop − rBCZ. We finally compute the modified Rayleigh number
Ra⋆/Rac as defined by Takehiro et al. (2020).
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Figure 4. Illustration of different profiles in models SBR97n035 (left panels) and SBR50n1 (right panels). Top panels show the
respective flux balances (similar to Figure 1, see also Equation 5), where the enthalpy flux of SBR97n035 has been significantly
dampened (blue curve of the left panel). Bottom panels show differential rotation profiles of both SBR97n035/SBR50n1 models,
showing a Sun-like/anti-solar (left/right), respectively. Radial profiles illustrated with solid/dashed lines are taken from the
Northern/Southern Hemisphere, respectively.

the strong-amplitude convective velocities achieved in

this model, which increase its effective Rossby number,

and hence diminishes the rotational impact of the Cori-

olis force on the convective dynamics. This results in a

decrease of the equatorward transport by the Reynolds

stress, along with enhanced poleward transport by the

meridional circulation in the angular momentum bal-

ance (see Brun et al. 2017 for more details).

3.3. Convective dynamics and their rotational

constraint

We now look deeper into the convection morphology to

understand the impact of a controlled Nusselt number,
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Figure 5. Radial velocity maps of SBR97n035 (left) and SBR50n1 (right), comparing the top of the simulation (r = 0.99 R⊙,
10 grid points deep, outer sphere) and the middle of the convective zone (Rmid = 0.85 R⊙, inner sphere). Both depths are
illustrated using the bottom-left and -right color bar, respectively. The top-right color bar corresponds to meridional planes.
The maximum value of a color bar corresponds to twice the standard deviation of the map it corresponds to. Dark arrows
enlighten the presence of columnar patterns (thermal Rossby modes), see e.g. Featherstone & Hindman (2016b) for schematics.
Note the color-scale difference between the two models. Animations are available at doi:10.5281/zenodo.14650437 (Noraz 2025).
Movies covers 17 s, which corresponds to 172 and 90 days in SBR97n035 and SBR50n1, respectively.
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Figure 6. Rossby number radial profiles of SBR97n035
and SBR50n1 models, respectively, in blue and red. The
fluid Rossby number Rof and the convective Rossby num-
ber Roc are respectively shown with solid and dashed lines.
The Rossby numbers reach unity when crossing the dotted-
horizontal solid line.

and illustrates radial velocity maps at different depths

in Figure 5. We draw attention to the fact that the dif-

ferent layers of a 3D illustration correspond to different

color scales.

The right parts of these 3D views (inner sphere) show

the radial velocity in the middle of the convective zone

(0.85 R⊙). We can see that the structure of convec-

tion in SBR50n1 (right panel) shows a broad range

of spatial scales, with an equatorial zone concentrat-

ing strong contrasts in amplitude, whose maxima can

reach ±400 m s−1. The left panel shows the same map

for the SBR97n035 model, where amplitudes of convec-

tive velocities are lower, with maxima reaching ±120

m s−1, as a consequence of the stronger dampening of

Fen by Frad in this model. Convective patterns aligned

along the north-south axis also appear in the equato-

rial zone. These are convective rolls swirling around

axes parallel to the rotation axis of the star. This phe-

nomenon is well known from global simulations of ro-

tating convective envelopes, known as ”banana cells”,

”Busse columns” or ”thermal Rossby waves” (Roberts

1968; Busse 1970, 1981, see also Section 3.4 of Dormy &

Soward 2007). They result from the Coriolis force act-

ing on radial flows in the equatorial plane. Here they

appear as a consequence of lower velocity amplitudes,

leading locally to a low Rossby number, and therefore

to high rotational constraint by the Coriolis force. As

expected, these columnar Rossby modes are prograde

compared to the local angular velocity in both models.

In that sense, one can see in SBR50n1 that the colum-

https://doi.org/10.5281/zenodo.14650437
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nar pattern is rotating slower than the solar rotation

rate Ω⊙, but nonetheless rotates faster than the mean

angular velocity at the corresponding latitudes (which

is notably decreased in the equatorial region of such an

anti-solar rotating model, see movies attached to Fig-

ure 5). Note that the columns also display small scales

sub-structures. Clearly, the flow is turbulent in both

models with high Reynolds number.

To quantify the rotational constraint, we illustrate

in Figure 6 radial profiles of the fluid Rossby number,

Rof = |∇×v|/(2Ω), and the convective Rossby number,

Roc =
√
Ra/(Ta · Pr). These quantify the ratios of in-

ertial forces, due to inertia and buoyancy respectively,

relative to the Coriolis force. We first note that Rof is

higher than unity on average at all depth in SBR50n1,

and has been significantly reduced in SBR97n035, such

that Rof ≤ 1 below 0.8 R⊙. It means that the rota-

tional constraint over the flows is strong at the base of

SBR97n035 CZ. We also see the importance of the Cori-

olis force in the dynamics when looking at Roc. The

latter is lower than unity for most of the CZ extend in

both models. This explains why some large scale banana

cells are also visible in velocity maps of SBR50n1 model

(black arrows on right panel of Figure 5) as the rota-

tion is still impacting the buoyancy. As buoyancy is the

driver of the thermal convective instability, Roc ratios

directly quantify the rotational constraint on the convec-

tion morphology. Thinner convective columns are ob-

served as the rotational constraint increase (SBR97n035

in Figure 5). We refer the interested reader to Sec-

tion 5.2 for more details.

When looking at meridional planes in Figure 5, we

observe that the convective sinking plumes (blue pat-

terns) exhibit smaller scales in SBR97n035 (right panel).

Additionally, downdrafts regions in SBR97n035 (left

panel) are shallower, whereas they penetrate deeper

in SBR50n1 (right panel). Indeed, the reduced ve-

locities and corresponding increased rotational effects

in SBR97n035 accentuate the influence of the Coriolis

force, which tilts the descending material toward the

rotation axis with respect to the local radial direction

(see also Brummell et al. 2002). Turning our attention

to SBR50n1 (right panel), the inclination of convective

plumes near the poles is indicative of such horizontal

deflections imposed by the Coriolis force. The shallower

depth of near-surface downdrafts in the equatorial re-

gion further supports the increase of the Coriolis force

impact over radial motions at low latitudes. Although

SBR97n035 (left panel) is more rotationally constrained

(lower Ro), latitudinal variations in downdraft behavior

are not as readily apparent in this Figure, due to the

dampening of downdraft velocities.

Overall, we see that a low Rossby number is better

than a large one to get the prograde equator, as was ex-

pected from previous studies (Matt et al. 2011; Gastine

et al. 2014; Hotta et al. 2023).

3.4. Polar dynamics

We now focus on the polar dynamics of these mod-

els, illustrated with Northern Hemisphere in Figure 7

(we also show Southern Hemispheres in Figure 18).

The upper panels show the near-surface radial veloc-

ity component ur, as seen from above the North Pole

of both SBR97n035 (left) and SBR50n1 (right). The

lower panels show the radial component of the vorticity

ωr, where red/blue corresponds to cyclonic/anticyclonic

motions, corresponding in the Northern Hemisphere

to anti-clockwise/clockwise motion, respectively. Both

models show busy small-scale dynamics, coherent with

what was discussed previously. It is noteworthy that

the morphology we find in the polar dynamics is coher-

ent with the so-called polar plumes structures for both

models (Stellmach et al. 2014; Hindman et al. 2020).

Furthermore, we identify additional interesting patterns

in the polar dynamics for which, to our knowledge, no

established classification currently exists in the litera-

ture.

On the bottom vorticity panels, we note two compact

populations of anticyclonic (blue) and cyclonic motions

(red), the latter being more intense. The strongest vor-

ticity is indeed found in intergranular lanes, where flows

are gathering at the edges of two or more convective

cells and then form intense gyres by local conservation

of angular momentum, in comparison to up-flows at the

center of convection cells. In addition, we find that the

strongest radial vorticity values found in intergranular

lanes are positive, then corresponding to cyclonic mo-

tions in the Northern Hemisphere. This is consistent

with the Coriolis-force impact on horizontally converg-

ing motions. Such characteristics are typical from polar-

plumes dynamics. Some plumes are seen to cross much

of the convection zone (see meridional cuts in Figure 5

and also Figure 19).

We also observe the formation of polar vorticity rings

in both models, as highlighted by the dark arrows.

These structures are characterized by small-scale inter-

granular down-flows that form cyclonic rings around a

central up-flow, visible in the radial velocity maps (top

panels). Unlike the so-called polar cells (Hindman et al.

2020), these vorticity rings do not maintain their co-

herence throughout the convective shell and have rel-

atively short lifespans, typically on the order of a few

days. Such transient behavior is likely a result of the

rapid and turbulent dynamics happening near the sur-
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Figure 7. North-Pole view of the near-surface dynamics (0.99 R⊙, 10 grid-points below the top) in SBR97n035 (left panels)
and SBR50n1 (right panels) models. We show maps of the radial velocity vr and radial vorticity ωr on top and bottom panels,
respectively. The maximum value of a color bar corresponds to twice the standard deviation of the map it corresponds to.
Concentric grid circle lines correspond to co-latitudes θ = 10, 30, 50 and 70◦, respectively, from the center to the edges. Dark
arrows enlighten the presence of polar vorticity rings (see the text). Animations are available at doi:10.5281/zenodo.14650437
(Noraz 2025).

https://doi.org/10.5281/zenodo.14650437
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face, along with the significant density stratification

(Nρ = ln(ρBCZ/ρtop) = 5.9) present in CZ of these mod-

els.

From the evolution of these polar vorticity rings (see

movies attached to Figures 7 and 18), we envision two

possible scenarios for their formation: either they are

generated by the overturn of rising convective cells at

sites of pre-existing intergranular cyclonic activity, lead-

ing to the formation of a vorticity ring at the cell pe-

riphery, or they originate from pre-existing intergranular

vortices that gain enough rotational strength to expand

laterally due to a local centrifugal effect. If the latter

mechanism is at play, this could signal locally the on-

set of what is referred to as the geostrophic turbulence

regime (Stellmach et al. 2014). Distinguishing between

these formation scenarios is a challenging task with the

currently available data. However, a detailed investiga-

tion into the exact dynamics of such features remains

open and will be addressed in future work.

In traditional Rayleigh–Bénard convection with-

out rotational constraint (or experiencing sufficiently

low Rossby number), vortical signatures are equally

weighted between cyclonic and anti-cyclonic structures.

When rotation is enhanced, the Coriolis force acts pro-

portionally on the plumes forming in converging flows,

making them preferentially cyclonic in the Northern

Hemisphere (Hindman et al. 2020). The asymmetry in

the cyclonic/anti-cyclonic distribution we report here is

then likely the result of a combination between the Cori-

olis influence and the enhanced vorticity of converging

intergranular lanes due to the local conservation of an-

gular momentum. Furthermore, the impact of the latter

on horizontal flows is proportional to the cosine of the

co-latitude, due to the vectorial definition of the force.

This means that the strongest impact will be felt by

polar flows, and will be spread at larger co-latitude θ

(lower latitudes) proportionally to the rotational con-

straint. This is coherent with what is seen in the bot-

tom panels, where the cyclonic-favored (red) asymmetry

is spread at lower latitude in SBR97n035 (θ ∼ 70◦) as it

experiences a smaller Rossby number (see Table 1). In

comparison, SBR50n1 model experiences it only in polar

regions (θ ≤ 40◦), and shows a rather equally-weighted

sign distribution around the equator.

Despite differences observed in the bulk dynamics of

the two models, particularly in terms of the thermal

Rossby modes near the equator, we note that both mod-

els present a remarkably similar morphology in their

small-scale near-surface dynamics (as shown in Figures 5

and top panels of Figure 7). To further elucidate this

overview, we will now quantify their differences and con-

front them with solar observations to help contextualize

our numerical models within the broader framework of

solar dynamics.

4. ADEQUATION OF THE

NUSSELT-CONTROLLED APPROACH WITH

HELIOSEISMIC CONSTRAINTS

We just presented a global model of solar convection

in a rotating spherical shell, which maintains a pro-

grade equator while possessing a high turbulence degree

(SBR97n035, Re ≥ 800). Such models usually tend to

over-estimate the large-scale amplitude of convection in

comparison to observational constraints (HDS12). As

a direct consequence, the Rossby number of such mod-

els are often over-estimated in comparison to the solar

value, leading to the establishment of a retrograde equa-

tor (as in SBR50n1 case). It is then particularly prob-

lematic that such models lose the characteristic solar

large-scale flows when trying to get closer to the so-

lar regime (c.f. Convective Conundrum, see e.g. Hotta

et al. 2023).

To circumvent this issue and maintain a prograde

equator, we have proposed a theoretical path in the

parameter space to control the Nusselt number of the

simulation Nu (see Section 1.3). This yields a Sun-like

rotating model that operates at solar luminosity and ex-

hibits a notably high degree of turbulence, which we now

aim to compare with solar observations. Helioseismol-

ogy has provided constraints on the internal dynamics of

the Sun for decades (Christensen-Dalsgaard et al. 1996;

Thompson et al. 1996; Hanasoge et al. 2012; Greer et al.

2015). We will now further confront this model to the

recent ones, regarding large-scale convection, the profiles

and amplitudes of inertial modes, and finally in terms of

degree of super- and sub-adiabaticity, before diving into

more in-depth analysis of the force balances in Section 5.

4.1. Energy distribution among convective scales

Under the Lantz-Braginsky-Roberts-anelastic approx-

imation (see Appendix A), the kinetic and internal en-

ergy can be defined as (Brown et al. 2012)

Etot = ρ̄
[ 1

2
v2r︸︷︷︸

Er/r

+
1

2
v2θ︸︷︷︸

Eθ/r

+
1

2
v2ϕ︸︷︷︸

Eϕ/r

+
1

2

g

cP

(
ds̄

dr

)−1

s2︸ ︷︷ ︸
Eint/r

]
, (13)

where (vr, vθ, vϕ) are the spherical coordinates of the

velocity field and g the amplitude of the gravitational

acceleration. Toroidal convective spectra Eϕ at 0.96 R⊙
are shown in the left panel of Figure 8 for SBR97n035

(Sun-like DR) and SBR50n1 (anti-solar DR) with blue

and red solid lines respectively, along with a summary

of the various observational and numerical constraints
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Figure 8. Left : Comparison of the non-axisymmetric part of toroidal kinetic spectra per multiplet Eϕ at 0.96 R⊙, defined
following the definition of Gizon & Birch (2012). Similar to data presented in Figure 2, with blue and red curves taken this
time from model SBR97n035 (solar-like DR) and SBR50n1 (anti-solar DR) respectively. The different ℓpond of global models, as
defined in Figure 2, are 102, 82 and 143 for SBR97n035, SBR50n1 and HKS22, respectively. Similarly, the different integral scales
are Lint = 4.1, 7.2 and 2.9% of the solar radius, respectively, which corresponds to ℓint = 23, 13 and 33. Right : Similar to left
panel, focusing now on SBR97n035 and SBR50n1 models, for longitudinal velocity maps at mid-convection zone (r = 0.85 R⊙),
close to the enthalpy peak (0.96 R⊙) and near the top of the simulation (0.99 R⊙). We add two indicative trends in gray-dashed
lines for comparison. SBR50n1 spectra exhibit a rather flat behavior for ℓ ≤ 20 at all depths, while SBR97n035 spectra show a
clear dampening of the large-scales amplitudes when probing near-surface layers.

previously presented in Figure 2 (dashed and gray-solid

lines respectively).

We first note that the signal of SBR97n035 (blue

curve) at low ℓ lies between both HDS12 and GHFT15.

This is encouraging to see that such a numerical ap-

proach hence goes in the right direction regarding con-

straints on the large-scale convective amplitude, in ad-

dition to exhibiting a prograde equator with this rela-

tively high Re value. At smaller scales, we then see that

SBR97n035 converges toward observed values for ℓ ∼ 50,

which is the only scales range where both HDS12 and

GHFT15 agree. Now focusing on SBR50n1 (red curve),

amplitudes at large-scales stays too high in compari-

son to this observational context, which further discrim-

inates this anti-solar rotating model in the solar context.

It is finally interesting to note that the Sun-like ro-

tating model SBR97n035 (blue) exhibits similar convec-

tive amplitudes than the Sun-like rotating model from

HKS22 at large-scales (ℓ ≤ 10). We note that HKS22

interpret it as a magnetic feedback, whereas in our case

it is achieved by controlling the Nusselt number without

including magnetic fields. In both cases, the decrease of

large-scale amplitude leads to a solar-type differential

rotation.

We finally want to remind here that spectra from

global convection simulations benefit from the infor-

mation over the whole sphere without any noise, in

contrary to observations, which only see one side of

the Sun, miss polar regions, and hence may struggle to
catch the lowest ℓ signal, even more so when they are

based on local techniques.

Now looking at the depth dependence of such spec-

tra, we show in the right panel of Figure 8 this toroidal

convective spectrum Eϕ at different depths for both

SBR97n035 and SBR50n1, which show distinct mor-

phology evolution. On one hand, the shape of SBR50n1

(anti-solar case) spectra of the largest scales (for ℓ ≤ 20)

is roughly conserved from the middle to the top of

the convection zone. The largest scales dominate the

toroidal convective spectrum at all depths and show a

maximum at ℓpeak = 6 with a rather flat spectrum for

ℓ ≤ 20 (see red curves). On the other hand, SBR97n035

(Sun-like rotating) spectra exhibit a clear change of be-

havior at these scales throughout the CZ. In the bulk
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(0.85 R⊙), the largest scales also dominate the toroidal

convective spectrum, with a maximum at ℓpeak = 5.

However, this dominance of large-scales weakens as the

surface is approached. Near-surface spectra (0.96 and

0.99 R⊙) even show an increasing trend with ℓ at large

scales, with ℓpeak = 22 at 0.99 R⊙.

Such behavior of SBR97n035 is encouraging, as obser-

vations of the solar surface report a peak of the spectrum

at the supergranular scale (ℓ ∼ 120) reaching Eϕ = 100

km3s−2 (P21). This comparison must be done with

great care as our models only reach 99% of the solar

radius, however the shifting of ℓpeak to higher ℓ values

as we get closer to the top is coherent with surface ob-

servations.

A possible scenario emerges and correlates well with

the schematics in Figure 3 of Featherstone & Hindman

(2016b). We emphasize here that the impact of the Cori-

olis force is greater for large scales (low ℓ). Indeed,

this force becomes dominant in the dynamics of spa-

tial scales L larger than the Rossby deformation radius,

i.e. for L > v/2Ω. The impact of the Coriolis force is

more pronounced on the dynamics of the deep CZ, where

the density scale height and thus convective scales are

larger, which influences the morphology of the convec-

tion if the rotational constraint is strong enough (Chan-

drasekhar 1961; Takehiro et al. 2020; Hindman et al.

2020). This is what happens in SBR97n035, where bulk

velocities have been dampened, favoring lower ampli-

tude columnar convective structures (banana cells) due

to the Coriolis force, and limiting their imprint close to

the surface. In the case of SBR50n1, convective velocity

amplitudes are larger, which allows the large convec-

tive scales formed deeply to imprint more strongly the

surface than in SBR97n035, and to be less rotationally

constrained.

Finally, we see that the overall amplitude of the spec-

trum increases with the radius for both cases, in co-

herence with vrms peaking around 0.98 R⊙, as can be

guessed from Figure 6. We also see that the slope at

small-scales changes between curves, due to the change

in turbulent viscosity value. Indeed, the higher the vis-

cosity is, the steeper the slope will be. Let’s remind

here that the viscosity in SBR50n1 is higher than for

SBR97n035, and that it increases as a function of the

radius in both models (see Appendix A.2 for further de-

tails).

In summary, the Sun-like rotating model SBR97n035

exhibits a clear dampening of the large-scales (ℓ ≤ 20)

amplitudes of the convection at the surface in compari-

son to its bulk dynamics. SBR50n1 does not experience

such a change, and keep a large-scale dominated spec-

trum all over the CZ. We aim to explore the underlying

reasons for this behavior in Section 5, a strong rotational

constraint can have a strong impact on energy transfers

among scales (see for instance Dubrulle & Valdettaro

1992).

4.2. Inertial modes

Solar inertial modes result from the interaction of low-

frequency waves, the restoring force of which is the Cori-

olis force (Greenspan et al. 1968). They were not ob-

served on the Sun until very recently, due to long-term

and high-precision observations required to detect them

(Löptien et al. 2018, see also Hotta et al. 2023). Re-

cently, Gizon et al. (2021) reported the detection of sev-

eral of these modes in data from both SDO/HMI and

GONG. We focus our interest here on the m = 1 surface

mode they report in observed horizontal velocities, be-

cause of its relatively high amplitude (vϕ ≃ 15 m s−1).

This mode was also detected in previous studies, but not

interpreted as such (Hathaway et al. 2013; Bogart et al.

2015; Howe et al. 2015). The amplitude of this mode

is maximal at high latitudes (|λ| = |90◦ − θ| ≥ 50◦),

where the phase speed becomes similar to the local

differential rotation speed, showing a spiral pattern in

these polar regions. This mode is a quasi-toroidal mode,

which means that its motions mainly lie in the horizon-

tal spherical surface.

We extract this spherical harmonic component of vϕ at

0.99 R⊙, average it over time, and show it over a North-

polar view for SBR97n035 and SBR50n1 in Figure 9.

A South-Pole perspective is also proposed in Figure 20

of the Appendix. In both models, we note that the

eigenfunction’s is compatible with the mode observed in

terms of amplitude. However, only SBR97n035 catch a

closer value (vϕ ≃ 10 m s−1), as amplitudes in SBR50n1

are twice higher. We also report for both the character-

istic spiral pattern in the polar regions. Notably, in the

SBR97n035 model (left panel), the pattern spirals out-

ward (i.e. away from the pole) in an anti-clockwise di-

rection, consistent with solar observations. Conversely,

in the SBR50n1 model (right panel), the spiral pattern

moves outward in a clockwise direction, allowing then a

clear distinction of both models using them = 1 compo-

nent signals. To better characterize the Rossby modes,

we will continue running these models, as long time se-

ries are needed to improve further their analysis.

Using a 2.5D linear eigenvalue solver applied to a dif-

ferentially rotating CZ model, Gizon et al. (2021) and

Bekki et al. (2022b) have shown that the direction of

the m = 1 mode spiral pattern is also sensitive to the

superadiabaticity amplitude. The compatibility of our

model SBR97n035 with solar observations regarding the

m = 1 mode morphology is then not only the result of
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Figure 9. Eigenfunction of the m = 1 mode taken from the longitudinal velocity vϕ at r = 0.99R⊙. Left and right panels
correspond respectively to SBR97n035 and SBR50n1. The color-bar maximum corresponds to two standard deviations of the
given map.

a prograde equator, but could therefore also originate

from a correct capture of superadiabaticity, which we

now turn to.

4.3. Superadiabaticity

The influence of the mean entropy stratification on

the dynamics is evaluated by the superadiabaticity δ,

defined such as

δ = ∇−∇ad = −HP

cP

dstot
dr

, (14)

where HP is the pressure scale height, ∇ = d ln T
d lnP is the

logarithmic derivative of temperature with respect to

pressure and ∇ad = γ−1
γ is its adiabatic value. The sign

of δ thus indicates if the system is convectively stable

(δ < 0) or unstable (δ > 0). We illustrate in Figure 10

the reference superadiabaticity δ profile we prescribed

as initial condition in both SBR97n035 and SBR50n1

models with the black dotted line. After the convective

instability develops and non-linearly saturates, the su-

peradiabaticity converges to a new profile shown by the

blue and red solid lines for the two models. To com-

pare them with the case of the Sun, we also add the

helioseismically constrained 1D solar structure model of

Brun et al. (1999) (green line).

First, we note that both SBR97n035 and SBR50n1

models show significant changes in the superadiabaticity

profile δ from its initial state (dotted line). Turbulent
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r/R *
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Figure 10. Superadiabaticity index δ = ∇ − ∇ad profiles
for the different models. The black dotted line represents the
initial reference state prescribed as initial condition, along
with solid lines representing the respective converged states.
We indicate the position of the overshoot, where Fen flips
its sign with vertical dashed lines (see also top panels of
Figures 4). Finally, the green solid line shows the δ profile
taken from the seismically constrained 1D model of Brun
et al. (1999).

convection develops a mean entropy gradient ⟨ds/dr⟩,
altering the initially prescribed profile ds̄/dr. We note

that δ decreases in the lower convection zone and in-

creases in the upper part. This also results in a profile

approaching that of the 1D model by Brun et al. (1999)

(green solid line) as the Nusselt number is decreased.
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The green line was calibrated to the Sun using helioseis-

mic constraints from SOHO (e.g., Gabriel et al. 1997).

Furthermore, recent helioseismic studies suggest suba-

diabaticity (δ < 0) near the base of the convection zone

(Gizon et al. 2021), although such constraints are still

currently improved (Bekki 2024). Thus, even if the exact

superadiabaticity profile in the Sun is still investigated,

our models are consistent with current constraints.

Some differences are however present, but neverthe-

less expected as a result of the turbulent and non-linear

3D dynamics of SBR97n035 and SBR50n1. In partic-

ular, we note the appearance of a sub-adiabatic region

(δ < 0) at the base of the CZ in both models. Such

sub-adiabatic layers have previously been reported in

various numerical models (Roxburgh & Simmons 1993;

Hotta 2017; Käpylä et al. 2019; Hotta et al. 2022; War-

necke et al. 2024). This type of layer is further enhanced

in models experiencing a relatively high Prandtl number

Pr = ν/κ (Bekki et al. 2017; Karak et al. 2018). The

dashed vertical lines show the location where the en-

thalpy flux Fen becomes negative at the top of the over-

shoot region (OR) for both models. The sub-adiabatic

(δ < 0) region above this radius is called the Deardorff

zone (DZ, in reference to Deardorff 1961, 1966). In such

zone, the plasma is thermally stable to convection, but

non-local transport of heat with positive enthalpy flux is

still happening (see Figure 4, also Brandenburg 2016).

It has been shown that the presence of such sub-

adiabatic stable zone at the base of the CZ can help

to damp large-scale convective amplitudes, by suppress-

ing thermal instability in depth where the convection

driving scale is larger due to the increased pressure

scale height (Bekki et al. 2017). Such mechanism has

then been advocated as a possibility to explain the

smaller amplitude of large-scale flows in observations,

in comparison to current simulations. However, we

observe here that the model exhibiting the strongest

suppression of large-scale flows, as compared to its

whole spectrum, is the one possessing the smallest DZ

(SBR97n035, see Figure 8). This indicates that the

change of the superadiabaticity at the bottom of the

CZ does not participate in the suppression of large-scale

kinetic energy in our models. This latter is here mainly

due to the suppression of buoyancy at these scales, as

will now be illustrated in Section 5.

In summary, one can say that our Sun-like rotating

model SBR97n035 is in qualitative agreement with cur-

rent solar observations, regarding the prograde equator,

large-scale convection, the m = 1 Rossby mode and the

superadiabaticity profile. In order to further understand

how such solar-type dynamical regime can be reached

by numerical models, we wish to perform a systematic

study of the different power and force balances in the

next Section.

5. SPECTRAL ANALYSIS OF DYNAMICS

EQUILIBRIA

We aim here to quantify the change of convection mor-

phology reported in Section 3. By decomposing the dif-

ferent terms of equations we solve, we can assess the

power and energy balances sustained in both models.

Comparing them allows underlining dynamical patterns

that are key to construct Sun-like large-scale flows.

5.1. Power balance

In order to understand the energy distribution among

the different convection scales, we first aim to de-

velop and quantify the energy transfers happening at

each scale, and thus building non-axisymmetric spectra

showed in Figure 8. We refer the reader to Appendix B

for the detailed derivation of the following evolution

equations, in which we use and complement the spher-

ical harmonics decomposition developed by Strugarek

et al. (2013, 2016a).

5.1.1. Budgets of the kinetic energy spectrum

We first focus on the evolution of kinetic energy den-

sity, whose budgets at a given radius r can be summa-

rized as

∂tE
K
ℓ =

∑
Pℓ=

Reynolds stress︷ ︸︸ ︷∑
ℓ1,ℓ2

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2

[
Rℓ(ℓ1, ℓ2)

]

+Cℓ(ℓ− 1, ℓ+ 1)︸ ︷︷ ︸
Coriolis force

+

Pressure work︷︸︸︷
Hℓ

+ Bℓ︸︷︷︸
Buoyancy

+

Viscosity︷︸︸︷
Vℓ , (15)

All right-hand-side power terms Pℓ are detailed in Ap-

pendix B, and the radial density of kinetic energy, i.e.

the energy of a spherical surface S at radius r, is here

defined such that EK
ℓ = ρ̄

2

∫
S
vℓ · vℓdΩ, where dΩ is

the solid angle. At a given radius, the physical length

L(ℓ, r) characterized by the harmonic degree ℓ is given

by the relation L = r√
ℓ(ℓ+1)

. Note that the contribution

from Coriolis Cℓ cancels when summed over the whole

harmonics ℓ as it should (the Coriolis force does not do

any work), so that it does not convert energy locally

from a reservoir to another, or transport it spatially via

a flux. However, the Coriolis force is able to redistribute
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Figure 11. Non-axisymmetric spectrum of the power balance from the kinetic energy evolution of SBR97n035 (left) and
SBR50n1 (right) models, represented as a function of the spherical harmonic degree ℓ (from large scales on the left to small
ones on the right), and quadratically summed over m > 0. Each spectrum is normalized to the peak amplitude of the pressure

contribution |Hℓ|, and computed as a root-mean-square (rms), such that |Pℓ| =
√∫

t

∫
r
P2

ℓr
2dtdr/

∫
t

∫
r
r2dtdr. Solid lines

represent the time/space rms, and corresponding shaded regions represent the standard deviation in time from it (The lower
limit has been adapted graphically to match the upper one on a logarithmic scale). The dashed vertical lines targets the lowest
scale where the Coriolis (blue) contribution is higher than the advective (red) one. Please note that this scale is smaller (higher
degree) in the solar-DR model on the left. We also add a gray vertical line at ℓ = 200 for comparison. We highlight the main
equilibria by indicating them.

energy among neighbor spectral scales ℓ − 1 and ℓ + 1

(see Appendix B, as well as Augier & Lindborg 2013 and

Strugarek et al. 2016b), which can be seen physically as

a mode conversion.

We show in Figure 11 the non-axisymmetric (m >

0) power balance operating in both SBR97n035 and

SBR50n1 models at each scale, by considering the root-

mean-square (rms) value |Pℓ| in time and radius of each

right-hand-side terms of Equation 15. We consider ra-

dius from 0.75 to 0.9 R⊙ to reveal the actual power bal-

ance in the bulk of the convection zone, excluding then

boundary-layer effects from the calculation. We observe

3 regimes depending on the scales considered in both

models. At small scales (large ℓ degrees), we observe

the dissipation regime where an equilibrium occurs be-

tween the inertia by the Reynolds tensor (red), bringing

kinetic into these scales, and the viscosity term (pur-

ple) dissipating it, as anticipated by turbulence theory

(Kolmogorov 1962). This regime begins at a similar de-

gree ℓ ∼ 200 for both models, which is consistent with

both models having similar Reynolds numbers (see Ta-

ble 1). At intermediate scales, we observe a buoyant-

inertial regime where buoyancy (green) is mainly bal-

anced by inertia, which this time withdraws energy from

these scales. Finally, at large scales (small degrees ℓ), we

note a quasi-geostrophic regime, where the main balance

appears between the pressure gradient and the Coriolis

force (geostrophy), but also inertia.

We propose to characterize the influence of the Cori-

olis force using ℓof , that we will now call the Rossby

scale, and which represents the highest degree ℓ where

the Coriolis contribution Cℓ is comparable to the con-

tribution of advective transport Rℓ. In other words,

we can define a spectral Rossby number RoSP(ℓ) =

Rm>0
ℓ /Cm>0

ℓ ∼ vℓ
2ΩLℓ

with vℓ and Lℓ respectively the

typical velocity and spatial scale corresponding to the

degree ℓ. The Rossby scale ℓof is then defined such that

RoSP(ℓof ) = 1.

We see that ℓof is a good measure to locate the tran-

sition from the quasi-geostrophic regime to the buoyant-

inertial regime in both cases. We note this occurs at a

smaller scale (higher degree ℓ) in the SBR97n035 case

(left panel, ℓof = 19 in comparison to 8), extending

the quasi-geostrophic regime towards smaller scales for

that model. As a result, the rotational constraint is felt
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Figure 12. Spectrum Rm=0
ℓ=3 (ℓm ̸=0) of the mean transfer of

a non-axisymmetric convective scale ℓm ̸=0 toward the ax-
isymmetric mode of the DR (ℓm=0 = 3). We illustrate
SBR97n035 and SBR50n1 in blue and red respectively, with
their corresponding ℓof taken from Figure 11. In partic-
ular, we see that a significant part of transfers have been
shifted at larger scales in the Sun-like rotating case (blue),
where more scales feels the rotational constraint of the Cori-
olis force (Rof < 1).

by fewer scales in the anti-solar case SBR50n1 (right

panel). Inversely, the dampening of convective velocities

in SBR97n035 makes the dynamics more sensitive to the

rotation, especially at large scales, where the regime is

even closer to geostrophy in this Sun-like rotating case.

We finally note that the Coriolis (blue) and buoyancy

(green) contributions intersect close to ℓof , meaning

Roc ≃ Rof ≃ 1 at this scale. At larger scales (smaller ℓ),

the Coriolis term is nearly one order of magnitude higher

than the buoyancy, and thus the convective excitation

by buoyancy is limited by rotation for these large scales.

This impact of rotation is well illustrated for SBR97n035

on the left panel, as we decreased the Nusselt number of

this model, and then limited the amplitude of velocities

resulting from the convective instability.

5.1.2. Angular-momentum transporting scales

One of the main striking difference, between

SBR97n035 and SBR50n1 models, lies in the fact that

they present reversed differential rotation profiles, de-

spite reaching a very similar turbulence degree and over-

all similar regimes of power balance (see previous sec-

tion). The detailed angular momentum balance can be

found in Appendix D. Here, we focus on identifying the

convective scales that are responsible for the build-up

and maintenance of the differential rotation profile.

We consider the Reynolds tensor Rℓ(ℓ1, ℓ2), quanti-

fying the non-linear advection of momentum in Equa-

tion 15. This tensor involves triadic interactions follow-

ing the triangular selection rule (|ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2;

m1+m2 = m) of spherical harmonics. These terms rep-

resent how non-linear interactions between two different

scales ℓ1 and ℓ2 can act as a source or a sink of kinetic

energy for the scale of interest ℓ. We choose to con-

sider here how interactions between non-axisymmetric

modes transfer energy towards a large-scale axisymmet-

ric mode. In other terms, how interactions between dif-

ferent convective scales play a role in the maintenance

of the DR.

For this purpose, we consider Rm=0
ℓ=3 (ℓ1,2) the normal-

ized spectrum of mean unsigned non-axisymmetric con-

tributions of each scale ℓ1,2, towards the axisymmetric

mode of the DR (ℓ = 3,m = 0) defined in Equation B32.

As the tensor Rℓ=3(ℓ1, ℓ2) of non-axisymmetric in-

teractions (ℓ1, ℓ2) is bi-dimensional, we show in Fig-

ure 12 the averaged contribution Rm=0
ℓ=3 (ℓm ̸=0) =

⟨Rm=0
ℓ=3 (ℓx)⟩x={1;2} (i.e. we sum over ℓ1 or ℓ2), following

Equation B32, for SBR97n035 and SBR50n1 in blue and

red respectively. We also report the respective Rossby

scale defined in Figure 11 for each case, using vertical

dashed lines.

We first see that the morphology of the kinetic energy

transfers spectrum has changed. In the anti-solar ro-

tating case (red), the strongest contributions to energy

transfer are located at scales of the order of the Rossby

scale (ℓof = 8), where the transition between the quasi-

geostrophic and buoyant-inertial regimes happens. For

the solar-DR rotating case (blue), the spectrum is now

bi-modal, with two distinct peaks of contributions in

the spectrum. One of them is located at higher scales

(smaller degree ℓ) in comparison to the anti-solar rotat-

ing case SBR50n1. The stronger influence of rotation

previously visualized in Section 3 for the Sun-like rotat-

ing case SBR97n035 has now shifted a significant part of

the transfer at larger scales (3 ≤ ℓ ≤ 7). In addition, the

Rossby scale is now located at a smaller scales (ℓof = 19

v.s. 8) because of the rotation influence, meaning that

a larger part of energy transfers towards the large scale

axisymmetric differential rotation are now originating

from non-axisymmetric convective modes that are sig-

nificantly influenced by the Coriolis force (i.e. experi-

encing RoSP(ℓ) < 1). We note that we have also carried

out the same analysis for the transfers towards the ax-

isymmetric mode ℓ = 5, and we found the exact same

behavior. Hence, we confirm that our Nu-controlled
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case is significantly different regarding the angular mo-

mentum transport explaining the solar-DR.

5.1.3. Budgets of the internal energy spectrum

Having looked at kinetic energy transfers sustaining

the convection, we now turn our attention to the power

balance sustaining the internal energy spectrum. To do

so, we assess heat transfers with an analysis of the in-

ternal energy balance. Similarly to Equation 15, we can

construct the radial density spectrum of the quadratic

entropy ES
ℓ = 1

2

∫
S
Sℓ ·SℓdΩ decomposed over the spher-

ical harmonics. We can then use it as a proxy to follow

the internal energy evolution from Equation 13 such as:

∂tES
ℓ =

∑
Pℓ=

Inertia︷ ︸︸ ︷∑
ℓ1,ℓ2

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2

[
Aℓ(ℓ1, ℓ2)

]

+ Sb
ℓ︸︷︷︸

Background Inertia

+

Radiation︷︸︸︷
Tℓ

+ Kℓ︸︷︷︸
Thermal Dissipation

+

Viscosity︷︸︸︷
VS
ℓ

+ Q0δℓ,0︸ ︷︷ ︸
Background net flux

, (16)

where δℓ,0 is the Kronecker symbol centered on the har-

monic degree ℓ = 0, meaning here that Q0 includes

terms which contribute only to the spherically symmet-

ric ℓ = 0 component of the Equation 16, i.e. represent-

ing a net radial flux through the shell of interest located

at a given radius.

We consider root-mean-square (rms) values |Pℓ| of

right-hand-side terms in Equation 16 and show the bal-

ance of their non-axisymmetric component in Figure 13,

in order to focus on the convective dynamics. First, we

observe 3 regimes in both cases: At small scales (high

degree ℓ), the thermal diffusion (orange) balances the

entropy brought at these scales by the advective trans-

port (v ·∇)S (red). At intermediate scales, the contri-

bution of the latter switch and becomes negative, due

to the transport of entropy by convection. This con-

vective instability is triggered in reaction to the nega-

tive ds̄/dr background gradient of entropy in the CZ,

represented here by a positive background contribution

(cyan). At large scales, a similar balance occurs, how-

ever we note a decrease of the amplitude for both the in-

ertial and background contributions. We further notice

that the background contribution experiences a particu-

larly strong drop in SBR50n1 for ℓ ≤ 4. Overall, we note

that the 3 different regimes found here correspond to the

quasi-geostrophic, buoyant-inertial and dissipation ones

found in Figure 11. The large-scale balance thus ex-

tends to higher degrees ℓ for SBR97n035 (left panel) in

this diagnostics due to the stronger rotational influence.

Similarly to Figure 11, we also report differences in the

shape of spectrums between both models. On one hand,

we see that the behavior of the thermal term (orange)

does not change. In particular, it becomes the main con-

tributor to the terms balance in both models at ℓ ∼ 200,

as expected from them sharing a similar Peclet number.

The shape of the background contribution (cyan) is also

similar for small scales ℓ ≥ 30−40 between both models,

but on the other hand, it changes at larger scales and

decreases in amplitude for ℓ ≤ ℓof . This emphasizes the

influence of the Coriolis force as responsible for such a

change. The scale where maximum non-axisymmetric

power |Pℓ| sustains the internal energy has thus been

moved from ℓ ∼ 8 in the anti-solar rotating case, to a

more pronounced peak contributions around ℓ ∼ 30−40

in the Sun-like rotating case.

It is interesting to note that the radiative term (green)

is negligible over the entire non-axisymmetric spectrum

for both models, despite the significant increase of κrad
when controlling the Nusselt number Nu of both mod-

els. Indeed, this term contributes almost exclusively to

the spherical mode ℓ = 0, meaning that it is a net ra-

dial transfer contributing globally over the whole shell

(see for instance the green contribution of flux balances

in Figure 4). Therefore, we underline here the impor-

tance to control our exploratory path of the parameter

space with a coefficient that does not act on the non-

axisymmetric balance. An increase of, for instance, κ

would have amplified the non-axisymmetric contribution

of the thermal term (orange), which is already signifi-

cantly acting in the power balance here. This would
have then impacted arbitrarily all scales by turbulent

cascade.

Furthermore, we note that the entropy advective spec-

trum (red) has changed all over the scales. In the Sun-

like rotating case SBR97n035, its contribution to the

balance has globally decreased, which is likely due to

the dampening of velocities implied by our control of

the Nusselt number Nu. We note an interesting min-

imum at the transition towards the dissipation regime

(ℓ ∼ 200), making the dynamics in this small scale range

resulting from a balance between the thermal dissipation

(orange) and the background inertia (cyan), which is not

happening in the anti-solar case SBR50n1. We then em-

phasize here that by impacting the transport of entropy

at the largest scales, its nature has also been changed at

smaller scales.
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Figure 13. Non-axisymmetric spectrum of the power balance from the internal energy evolution of SBR97n035 (left) and
SBR50n1 (right) models. The Figure is constructed similarly to Figure 11, computing this time right-hand-side terms of the
internal energy spectrum evolution (16). The dashed vertical line represent ℓof , taken from Figure 11. Each spectrum is
normalized to the peak amplitude of the background contribution |Sb

ℓ |, and computed as a root-mean-square (rms) over time
and radii from 0.75 to 0.9 R⊙. We highlight the main equilibria by indicating them.

In that sense, an increase of the radiative diffusion

does not impact directly the non-axisymmetric balance

of heat transfers through the amplitude of the radia-

tive transfer term Tℓ, but still plays a role on the na-

ture of this heat dissipation cascade, by acting indirectly

through the velocity field spectra.

5.2. Scale by scale time scale : τ - ℓ diagrams

After looking at the amplitude of the different en-

ergy transfer terms, we now present non-axisymmetric

spectra of the characteristic time scales associated with

some of them. Inspired by the theoretical work of Nataf

& Schaeffer (2015), such τ -ℓ diagrams allow comparing

the different transfer time-scales between the different

energy reservoirs (see also the recent Nataf & Schaef-

fer 2023). This enables to highlight which process(es)

predominantly control(s)/influence(s) the dynamics at a

given scale, by possessing a time-scale shorter than other

processes. To extract such a time-scale from our simu-

lations, we look at the ratio between the kinetic |EK
ℓ | or

internal energy |ES
ℓ |, and a power term |Pℓ| contributing

to it (defined in the right-hand-side term of either Equa-

tion 15 or 16). This corresponds to the typical time of

energy injection/extraction of this term into/from the

corresponding energy reservoir. We look at the corre-

sponding non-axisymmetric spectrum for each ratio, av-

eraged over time and radii (r ∈ [0.75, 0.9] R⊙). For infor-

mation, ℓ = 10 and 100 correspond to physical lengths of

56 and 5.6 Mm, respectively, in the middle of the convec-

tion zone (0.85 R⊙). We show in the left and right panels

of Figure 14 τ−ℓ diagrams of the Sun-like (SBR97n035)

and anti-solar rotating case (SBR50n1) respectively.

First, we plot the characteristic numerical viscous

time-scale τν = EK
ℓ /|Vℓ| in thick purple lines, found

in our simulations. Every other line crossing this vis-

cous border and going at longer time-scales will then

be dominated by the viscous contribution. There-

fore, we choose to omit the time scales higher than

τν for the sake of clarity. The dashed purple line

represents the theoretical dissipation time τνth
(ℓ) =∫

r
r2L(ℓ, r)2/ν(r)dr /

∫
r
r2dr, spherically averaged over

r ∈ [0.75, 0.9] R⊙. We note that the numerical viscous

time τν is different from the theoretical one τνth
for both

cases. Indeed, the latter illustrates a purely isotropic

dissipative assumption, which means that the difference

τν < τνth
likely comes from the anisotropy of velocity

gradients.

Then, τRossby = r/(Ω⊙L(ℓ, r)) (dashed-blue diagonal

line) represents the theoretical propagation time of a

ℓ-degree Rossby wave moving horizontally on the spher-

ical surface of radius r (Nataf & Schaeffer 2015). Here,

we show its averaged value over r ∈ [0.75, 0.9] R⊙.

Above this line, the regime is supposed to be quasi-

geostrophic. We then show the Coriolis contribution
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Figure 14. τ − ℓ Diagrams of the different processes in the bulk of the convective zone for the SBR97n035 left and SBR50n1
right. Solid lines represent different characteristic time-scales extracted from both models. The viscosity (violet), Coriolis
(blue), buoyancy (green), convective turnover (black), advection of momentum (red) and quadratic entropy (orange) time-
scales are respectively defined such that τν = EK

ℓ /Vℓ, τCoriolis = EK
ℓ /Cℓ, τb = EK

ℓ /Bℓ, τc = L(ℓ)/
√

2EK
ℓ /ρ = L(ℓ)/vℓ,

τadv = EK
ℓ /|Rℓ| and τadS = ES

ℓ /|Aℓ|. Each spectrum show the non-axisymmetric contribution, averaged in time and space over
r ∈ [0.75, 0.9] R⊙. The dashed lines represent the theoretical characteristic times for comparison, such that: the viscous time
of each scale, τνth = L(ℓ)2/ν, the rotation time-scale τΩ = 1/Ω⊙ and τRossby = r/(ΩL(ℓ)) the propagation time for a Rossby
wave of size L(ℓ). At a given radius, the physical length L(ℓ, r) characterized by the harmonic degree ℓ is given by the relation
L = r√

ℓ(ℓ+1)
.

τCoriolis = EK
ℓ /|Cℓ| and the characteristic time of ro-

tation τΩ = 1/Ω = Prot/2π, indicated by the blue solid

curve and dark horizontal dashed line, respectively. The

latter is independent of the scale considered. Similarly,

we notice for both models a difference between the Cori-

olis timescale τCoriolis and the theoretical one τRossby, as

the latter described the idealized bi-dimensional motion

of Rossby waves along a spherical plane and the former

acknowledges for the three-dimensionality of the con-

vective dynamics we are resolving. Nevertheless, both

time-scales have the same trend (decreasing as a func-

tion of ℓ) as the Coriolis force has a stronger influence

on large scales L(ℓ).

We further show τadv = EK
ℓ /|Rℓ| and τb = EK

ℓ /|Bℓ|,
the characteristic time-scale of inertia and buoyancy

(red and green) in the kinetic energy evolution respec-

tively. We see that the decrease of inertia spectrum

at large scales is steeper in SBR97n035, which is co-

herent with the right panel in Figure 8. Indeed, the

τadv−τRossby crossing happens at larger scale (i.e. lower

ℓ) in SBR50n1. More generally, the overall time-scale

of the inertia τadv in SBR97n035 is longer than in

SBR50n1, coinciding with the decrease of convective ve-

locities in this model.

We also illustrate the spectrum of the convective

turnover time τc with the solid black curve, aver-

aged over r ∈ [0.75, 0.9] R⊙ such that τc(ℓ) =∫
r
r2L(ℓ, r)/

√
2EK

ℓ (ℓ, r)/ρ̄(r)dr /
∫
r
r2dr. Its intersec-

tions with the theoretical τνth
and τRossby dashed lines

respectively define the Kolmogorov L(ℓν) and Rhines

L(ℓRh) scales, where Re = v(ℓν)L(ℓν)/ν = 1 and

L(ℓRh) ≃
√
v(ℓRh)/Ω

1 respectively (Kolmogorov 1941;

Rhines 1975, see also Nataf & Schaeffer 2023). We note

that SBR50n1 (right panel) exhibits a shorter convec-

1 More precisely, the Rhines scale is exactly defined as√
u · r/(2Ωsin(θ))., where θ is the co-latitude.
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tive turnover timescale τc than SBR97n035 (left panel)

for a given degree ℓ, as expected. However, when the

intersection of τc and τνth
, we see both models possess

a similar Kolmogorov scale ℓν ∼ 250, hence a similar

extent of the turbulence cascade despite their difference

in numerical resolution (Nθ = 1024 for SBR50n1 and

1536 for SBR97n035, see Table A.2). As for the simi-

lar Reynolds number Re, hence turbulence degree, we

reported in Table 1, this is due to the lower viscosity

value ν of SBR97n035 compensating for its lower veloc-

ities amplitudes.

Another interesting property emerges when examining

larger scales where τc crosses τRossby. The Rhines scale

is larger (smaller ℓRh) in SBR50n1 than in SBR97n035.

Although the τRossby–τc crossing is only an approxima-

tion of the Rhines scale, it provides a reasonable es-

timate of the spatial extent of thermal Rossby modes

(convective columns). This suggests that convective

columns are about twice as small in SBR97n035, which

is consistent with Figure 5. Finally, in SBR50n1, τc
crosses the rotation timescale τΩ, but in SBR97n035,

the convective turnover time remains longer than τΩ for

all degrees ℓ, further validating the significant rotational

constraint of case SBR97n035.

We also report a particular feature when looking at

the advection time of quadratic entropy τadS = ES
ℓ /|Aℓ|

(orange line), which becomes shorter than τc (dark line)

in SBR97n035 for intermediate scales (10 ≤ ℓ ≤ 100).

This indicates that despite lower velocity amplitudes,

the non-local transport of heat via convection is stronger

with respect to the local internal energy it is contribut-

ing to, i.e. more efficient for the Sun-like rotating

SBR97n035 model.

5.3. Force Balance

After the characterization of the temporal evolution

of energies occurring in our setup, we now consider the

force balance, which gives information on which process

actually creates the movement. Previously, we noted

that understanding the role of the buoyancy force is key

in order to interpret physically the differences between

the solar-like rotating model SBR97n035 and the anti-

solar one SBR50n1. Since buoyancy acts only in the ver-

tical force balance, focusing on the vertical component

allows isolating further its corresponding dynamics.

This can be computed by projecting the radial part of

the momentum Equation A2 on the spherical harmonics

(see e.g. Aubert et al. 2017) such that

Inertia︷ ︸︸ ︷(
∂v

∂t

∣∣∣
r
+ (v · ∇)v

∣∣∣
r

)m

ℓ

=−
[
∇r

(
Ptot

ρtot

)]m
ℓ︸ ︷︷ ︸

Pressure

Buoyancy︷ ︸︸ ︷
+

(
stot
cP

g

)m

ℓ

−
(
2Ω∗ × v

∣∣∣
r

)m

ℓ︸ ︷︷ ︸
Coriolis

Viscous︷ ︸︸ ︷
−
(
1

ρ̄
∇ ·D

∣∣∣
r

)m

ℓ

(17)

where cP , g and D are respectively the heat capacity

at constant pressure, the star’s gravity field and the

viscous stress tensor defined in Equation 2. Similarly

to Section 5.1, we compute the rms value in time and

radii of the non-axisymmetric part (m > 0) of the dif-

ferent terms in Equation 17. We include here the local

temporal derivative to the inertia contribution in order

to assess a clear balance interpretation. Indeed, even

when assuming a quasi-stationary state where this lo-

cal derivative averages to zero over time, its rms value

does not vanish as the local derivative is never precisely

zero at a given time in this diagnostics. We focus again

our attention on the bulk of the CZ, and illustrate the

overall force balance in Figure 15.

First, we note a three-term balance occurring at the

largest scales between the Coriolis, pressure and the

buoyancy force in both models for ℓ < ℓof . At in-

termediate scales, we note that the buoyancy (green)

contributions drops and becomes significantly smaller

in SBR97n035, especially for ℓ ≥ ℓof = 19. We

then note a three-term balance Pressure-Coriolis-Inertia

in the range 50 ≤ ℓ ≤ 200 for this model, by

contrast to a four-term one Inertia-Buoyancy-Coriolis-

Pressure in the range 10 ≤ ℓ ≤ 100 of the anti-

solar rotating model. Following Teed & Dormy (2023),

we drop pressure in our notation and conclude that

the main force balance in the anti-solar model is a

Coriolis-Inertia-Buoyancy/Archimedean (CIA), whereas

a Coriolis-Inertia (CI) balance is achieved in the solar

model.

Similarly to the energetic diagnostic in Section 5.1.1,

the Coriolis spectra (blue) are rather similar between

both models, however the shape of the inertia spec-

trum has changed in this force diagnostics, being

significantly weaker in the balance at small scales

for SBR97n035. To characterize it, we can define

ℓof,2 such that RoFB(ℓof,2) = 1, where RoFB(ℓ) =(
dv
dt |r

)m>0

ℓ
/ (2Ω∗ × v|r)m>0

ℓ . Similarly to ℓof , we note

ℓof,2 is located at a smaller scale (higher ℓ) in the

SBR97n035 case (left panel, ℓ = 85 in comparison to

25 in SBR50n1).
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Figure 15. Non-axisymmetric spectrum of the force balance A2 in SBR97n035 (left) and SBR50n1 (right) models, represented
as a function of the spherical harmonic degree ℓ. Similarly to Figure 11, this has been quadratically summed over m > 0,
and each spectrum is normalized to the peak amplitude of the pressure contribution (yellow). Each one is computed as a

root-mean-square (rms), such that |Fℓ| =
√∫

t

∫
r
f2ℓr2dtdr/

∫
t

∫
r
r2dtdr. We also consider radius from 0.75 to 0.9 R⊙, and solid

lines represent the spatio-temporal rms while corresponding shaded regions represent the min/max deviation in time from it.
The dashed gray vertical line represents ℓof , taken from Figure 11, and the dashed black vertical line (ℓof,2) targets the lowest
scale where the Coriolis (blue) contribution is higher than the inertia (red) one.

It is interesting to note that the buoyancy term is

mainly equal or smaller than the Coriolis force at all

scales in these non-axisymmetric balance. This is con-

sistent with Figure 6, where we saw that the convec-

tive Rossby number Roc is lower than 1 between 0.75

and 0.9 R⊙, meaning that the Coriolis force domi-

nates over buoyancy in both the axisymmetric and

non-axisymmetric balances. The only exception to this

statement happens for ℓof,2 = 25 ≤ ℓ ≤ 100 in the anti-

solar rotating case (right), where the buoyancy (green)

exceeds Coriolis and becomes the second term of the

balance after the inertia.

In summary, when comparing the different diagnostics

of Section 5, we see that the control of Nu has allowed

to control the buoyant driving of the convective scales,

thereby extending the range of large scales influenced

by the Coriolis force in case SBR97n035. The differ-

ence between diagnostics however lies on the scale range

that is impacted: in the solar rotating case, the buoy-

ancy injects/drives mostly at large scales (see Figure 15)

and then nonlinear effects transfer energy along the tur-

bulent cascade towards intermediate scales to establish

a different balance there. In comparison, in the anti-

solar case SBR50n1, buoyancy driving plays a dominant

role in the energy/force balance for the majority of the

considered scales. Replicating these analyses at various

depths confirm that these trends are robust through-

out the whole CZ, and that the range of rotationally-

constrained scales increases with depth (i.e ℓof and ℓof,2
increase, as expected from Figure 6).

6. DISCUSSIONS

Global models presented here do not resolve the con-

vection zone all the way up to the solar surface, but

are getting within 1%. Due to the steep decrease of

density scale height in the last few percents of the so-

lar radius, this would require numerical resources out of

the scope of this study, and a fully compressible code

such as Dyablo (Delorme et al. 2022). We thus remind

here that present models may not precisely depict the

very near-surface dynamics and driving of entropy rain,

which subsequent impact on deep convection is still sub-

ject to debate (Cossette & Rast 2016; Hotta et al. 2019;

Käpylä 2023b; Hotta et al. 2023). It is likely that even

smaller scales will have to be resolved in order to de-

cipher the surface dynamics (Kupka & Muthsam 2017)

and their mutual influence with deep convection (see

Delorme et al. 2022 and Popovas et al. 2022). As a
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compromise between including the most scales and lim-

iting numerical resources, the top of SBR97n035 and

SBR50n1 models presented here has been set to 0.9914

R⊙.

The Convective Conundrum points out the limits of

MLT (Böhm-Vitense 1958) to fully account for the com-

plex 3D nonlinear interactions occurring in a rotating

stellar shell. Various improvements to MLT are be-

ing explored to incorporate effects such as the Dear-

dorff term (Brandenburg 2016) or rotational constraints

(Vasil et al. 2021). In our study, we have modified the

convective flux by reducing the Nusselt number (Nu)

from its MLT prediction. This was achieved by increas-

ing the radiative flux Frad via adjustment of the radia-

tive diffusion coefficient κrad. It is crucial to clarify that

altering κrad does not imply a change in the physical

opacity κop of the medium, but merely serves here as

a numerical recipe to govern the convective flux. This

way, we can control the experiment without directly af-

fecting the entropy transport in the non-axisymmetric

balance, thus ensuring the consistency of the convective

dynamics across the scales resolved in our simulations

(see magnitudes of the radiative term in Figure 13).

As mentioned in Section 1, a transition towards an

anti-solar DR profile is expected once a given Rossby

number value is reached (Gastine et al. 2014). Para-

metric studies using the same ASH code already re-

ported this transition value being within the interval

0.7 ≤ Rof ≤ 1.2 (Matt et al. 2011; Brun et al. 2017).

In the present paper, we reproduce the ordering solar-

type/anti-solar as a function of the Rossby number,

however we have seen that this fluid Rossby number

transition value is here in the interval 1.5 ≤ Rof ≤ 2.5

for this set of models. Indeed, since vorticity peaks at

small scales (Miesch et al. 2008; Candelaresi & Bran-

denburg 2013), the Rossby number value characterizing

a given regime is likely to be Reynolds number depen-

dent, and so will be the transition value towards the anti-

solar differential rotation regime. Other parameters may

also influence it, such as the density contrast (Käpylä

et al. 2011a), the Prandtl number (Käpylä 2023a), or

the presence of a magnetic field (Brun et al. 2022; Hotta

et al. 2022). Specific parametric studies are therefore re-

quired to characterize these dependencies. However, this

is not a major issue in the present paper, where we have

kept these parameters constant between SBR97n035 and

SBR50n1 (see Tables 1 and A.2 for details).

The resulting dynamics of SBR97n035 turn out to

be in qualitative agreement with the solar DR profile.

Nonetheless, we recognize here that the models yields a

more cylindrical rotation profile than the one inferred

through helioseismology (see Figure 1). Reasons for the

break of Taylor-Proudman constraint in the Sun, i.e.

∂z⟨vϕ⟩ ≠ 0, is an active area of research. While cer-

tain studies suggest potential parametric adjustments

to capture this complexity in the meantime (see Hotta

et al. 2023 for a detailed bibliography), our research did

not focus on meticulously calibrating the model to repli-

cate this specific helioseismic feature. Our primary focus

here is to gain understanding of the overlying trends re-

garding rotational constraints on the global convective

dynamics and the resulting self-consistent rotation pro-

file. Of course, a fine-tuning of Nu at a given Re would

be possible to get even better agreement.

The apparition of a Deardorff zone (DZ) results from

the deposition of low-entropy material at the bottom

of the CZ. Different studies have emphasized the de-

pendence of its extent to the Prandtl number (see e.g.

Gilman 1977; Bekki et al. 2017). Indeed, character-

istics of the deposition depend on the ratio between

the characteristic travel time of a convective eddy τc =

L/v and the characteristic timescale over which it dif-

fuses/deposits its entropy signature τκ = L2/κ (i.e. the

Peclet number Pe = vL/κ = τκ/τc = Pr×Re). Further
note that Pe plays a key role in distinguishing over-

shooting (small Pe) from penetrative convection (large

Pe) as explained in Zahn (1991). However, it is interest-

ing to note in Figure 10 that SBR50n1 exhibits a wider

DZ than SBR97n035, despite similar Prandlt Pr = 1/4,

and Peclet numbers Pe ≃ 200 for both models. Let’s

further remind here that κrad plays a negligible role in

the non-axisymmetric diffusion for both models in com-

parison to κ (see in Figure 13). This means that the en-

hancement of the low-entropy deposition at the bottom

of the CZ must be enhanced in SBR50n1 via another

dynamical reason. Stronger correlations between the ra-

dial velocity vr and temperature perturbation T may be

a possibility for this DZ enlargement, and would be co-

herent with the larger enthalpy flux Fen of SBR50n1 in

comparison to SBR97n035 (see Figure 4). Knowing the

exact scaling between the spatial extent of the DZ and

Fen will however require a larger parametric study, with

more models spanning the Nusselt Nu parameter space,

which goes beyond the scope of this study. Another

possible contribution to explain such difference as been

reported by Käpylä (2024), who observes that the DZ

extend decreases as the rotational constraint is stronger.

The comparison between SBR97n035 and SBR50n1 is

then coherent with such a result, as SBR50n1 exhibits

a larger Rossby number, hence a weaker rotational con-

straint.

The set of models we presented in this study does

not consider magnetism yet, as we aim at investigating

here some aspects of the current Convective Conun-
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drum from the viewpoint of hydrodynamic global 3D

simulations. The exact impact of the magnetism on the

angular momentum redistribution and the convective

dynamics is currently subject to debate (Brun 2004;

Käpylä et al. 2014; Karak et al. 2015; Guerrero et al.

2016; Brun et al. 2022; Hotta et al. 2022; Warnecke et al.

2024) and will require a dedicated numerical setup to

be investigated.

7. CONCLUSION

During the last 20 years, a key goal of global mod-

elling of convection in rotating spheres has been to ap-

proach more and more the stellar turbulent regime (Mi-

esch et al. 2008). In particular, global models of solar-

type turbulent convection have been developed with

some success, in order to explain the possible origin of

the observed solar differential rotation (DR) and sur-

face magnetic flux, at the origin of the 11 years activity

cycle, along with coherent scenarii of longer time-scale

magneto-rotational evolution (see e.g. Käpylä et al.

2011b; Brun & Browning 2017; Strugarek et al. 2017;

Brun et al. 2022; Hotta et al. 2023; Noraz et al. 2024).

However, it appeared that the amplitude of giant con-

vection cells in these global solar-type models are usu-

ally stronger than what is inferred from helioseismology

(Hanasoge et al. 2012; Greer et al. 2015). Subsequently,

this leads to an over-estimation of the effective Rossby

number Ro of global models, and can lead to the tran-

sition towards an anti-solar rotating regime (retrograde

equator) when increasing the turbulence degree (Gas-

tine et al. 2014; Brun et al. 2017; Hindman et al. 2020;

Hotta et al. 2022). This is known as the Convective Co-

nundrum (O’Mara et al. 2016), and acknowledges the

current need for better understanding of the solar con-

vective dynamics. In that sense, the differential rotation

trends found as a function of Ro appear robust (Gastine

et al. 2014; Noraz et al. 2024), but the precise location

of a given star, e.g. the Sun, in the Rossby parameter

space has to be currently considered with care.

In this context, we performed a numerical study aim-

ing at understanding key force and energy balances in

the solar convective envelope. To do so, we have con-

structed a theoretical path in parameter space and pro-

posed a fluid mechanics experiment where we control

Ro, while increasing the Reynolds number Re, hence

the turbulence degree, and keeping solar parameters

(L⊙,Ω⊙). This is made possible by controlling the Nus-

selt number Nu, which quantifies the amount of energy

transported by convection (Käpylä et al. 2017, 2019). In

other words, we can then limit velocity amplitudes (∼
constant Ro) while decreasing viscous dissipation (in-

creasing Re), by controlling the amount of energy trans-

ported by convection vs diffusion processes (decreasing

Nu). We were then able to construct a relatively highly-

turbulent global Sun-like model (Re ∼ 800) while en-

suring a solar-like DR regime (prograde equator, case

SBR97n035) and a solar rotation rate Ω⊙. We also con-

structed a control run, exhibiting a similar Re but a

larger Nu. This control run presents an anti-solar retro-

grade equator. We have compared the dynamics of the

two models in Section 3, compared their dynamics to

existing solar observation constraints in Section 4, and

characterized them using spectral analyses in Section 5.

We report that the morphology of the convective dy-

namics has significantly changed, even if both mod-

els share a similar turbulence degree. By limiting

the amount of energy the convection has to transport

(through the decrease of Nu), convective velocities have

been globally decreased over the whole convective spec-

trum, and even more so at large scales. In the Sun-like

rotating case SBR97n035, such a global translation has

changed the force balance over the turbulence cascade,

by expanding the range of scales significantly impacted

by the Coriolis force. As a direct consequence, veloc-

ity amplitudes of SBR97n035 are even more damped

at large scales, and lie now in the observational range

inferred by helioseismology (between revisited HDS12

and GHFT15, see Figure 8). This enhanced decrease of

amplitude at large scales then results in a shift of the

spectrum peak towards smaller-scale.

Our spectral analysis has revealed that both mod-

els can be distinguished by the nature of energy trans-

fers across three distinct regimes: the large-scale quasi-

geostrophic (QG) balance, the buoyant-inertial interplay

at intermediate scales, and the dominance of dissipa-

tion at small scales. For the SBR97n035 model, which

exhibits Sun-like rotation characteristics, the QG equi-

librium extends down to smaller scales compared to the

anti-solar model. A closer examination of the kinetic en-

ergy transfer identifies significant alterations in the con-

tributions of buoyancy and inertial effects (via Reynolds

stress) to the spectrum. The model with a controlled

Nusselt number (Nu) shows a marked suppression of

buoyancy-driven energy at larger scales, thereby atten-

uating the subsequent transfer of kinetic energy through

inertia. Detailed views into this advective processes al-

low understanding how differential rotation is energet-

ically sustained. For SBR97n035, there is a noticeable

shift in energy injections from non-axisymmetric convec-

tive scales toward larger scales, emphasizing the effects

of stronger rotational constraints on the model’s dynam-

ics. Analysis of the force balance further corroborates

these findings, particularly accentuating the reduced in-
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fluence of buoyancy forces. Hence, the maintenance of

the prograde equatorial rotation in our model are pre-

dominantly supported by a delicate Coriolis-Inertia (CI)

balance, as opposed to the typically considered Coriolis-

Inertia-Archimedes (CIA) framework.

In the context of the convective conundrum, limiting

Ro ∼ v/2ΩR∗ is usually done by either increasing the

rotation rate Ω∗ or decreasing the luminosity L∗ ∼ v3.

On one hand, altering Ω∗ does affect the buoyancy, but

not similarly than reducing the Nusselt number, as only

the Coriolis force is changed. On the other hand, we

expect a similar impact between reducing the Nusselt

number and reducing the luminosity, as modifying the

radiative diffusivity affects the axisymmetric flux bal-

ance but not directly the non-axisymmetric dynamics

(cf. Figure 13). Therefore, reducing Nu allows de-

creasing Ro while maintaining observational constraints

(L⊙,Ω⊙) and preserving what we consider to be the key

dynamical regimes of the system.

Using τ−ℓ analysis, inspired from the geophysics com-

munity (Nataf & Schaeffer 2015, 2023). We have fur-

ther analyzed properties of turbulent dynamics in the

spectral space. A similar Kolmogorov scale has been

found for both models, and differences in the Rhines

scale confirms that the rotational constraint is stronger

on SBR97n035 dynamics and shapes the convection into

smaller convective columns aligned with the rotation

axis in the bulk of the CZ. We also note an over-

all increase of buoyancy characteristic time-scales for

SBR97n035, implying a morphology change of the iner-

tia spectrum. An interesting point we report here is an

inversion of transport timescales ordering between both

models. Indeed, the characteristic timescale of entropy

advection becomes smaller than the one of momentum

for SBR97n035.

To synthesize the main messages when comparing

the energetic Equation 11 and dynamic Equation 15

diagnostics, the difference between both lies on the

scale range that is impacted. Indeed, the most signifi-

cant drop-off of spectra in SBR97n035 occurs at large

scales due to the rotational constraint in the energetics

analysis. Conversely, the force diagnostics point to a

drop-off happening at small scales due to the global

dampening of buoyancy, and a subsequent decrease in

the inertia power. This distinction underscores a key

concept: examining energy transfers quantifies how the

system changes across different scales, while force bal-

ance analysis underlines the actual mechanisms driving

this change. Conceptually, the transition from CIA to

CI raises then questions about the source of motions,

typically attributed to Archimedean buoyancy. Specif-

ically, there is large-scale injection or forcing (as seen

in the force diagnostics, Figure 15) and a subsequent

transfer along the cascade toward intermediate scales

(as shown in the energy diagnostics, Fig. 11). This

suggests that the buoyancy force has a lesser effect in

case SBR97n035, especially at intermediate and smaller

scales, while turbulent transfers dominate the energet-

ics balance at these scales. In case SBR50n1, buoyancy

however still dominates the dynamics locally over much

of the scales considered.

When confronted with recent observations, we find

that our Sun-like rotating model is compatible with he-

lioseismology in terms of large-scale convective ampli-

tudes (see Figure 8), surface Rossby mode m = 1, and

inferred superadiabaticity profiles (see Section 4). This

is encouraging as we now have a relatively turbulent

model (SBR97n035, Re ∼ 800) that exhibits solar-type

differential rotation with a prograde equator, that agrees

qualitatively with the constraints, while being also con-

sistent with the Sun’s rotation rate and luminosity. We

do not claim here that ℓ = 0 diffusion transport in the

convection zone reflects a physical truth about the Sun’s

energy transfer, but rather that the theoretical path we

propose in the (Ro,Re,Nu) space is an opportunity to

investigate and conserve what we believe to be the main

force balances possibly operating in the Sun, even if cur-

rent model are still far from the real solar turbulent

regime.

As mentioned above, the Sun-like rotating model

SBR97n035 exhibits columnar convective patterns in the

bulk of the CZ (see Figure 5), resulting from the stronger

Taylor-Proudman constraint in this model. However, it

is key to note that such patterns do not imprint the dy-

namics of the model near the surface (see Figure 8).

It is important to remind here that the detection of

such thermal Rossby modes is still pending on the Sun.

Therefore, the SBR97n035 model emphasizes here the

possibility that these modes actually exist in the deep

convection zone with limited amplitudes, but that their

signal is hidden and concealed by near-surface small-

scale convective granulation (see e.g. Bessolaz & Brun

2011; Guerrero et al. 2013; Featherstone & Hindman

2016b).

Additionally, our models reveal the presence of in-

teresting polar vorticity rings, which are manifested

as transient cyclonic features surrounding up-flows (cf.

Figure 7). This phenomenon is distinct from previously

observed polar cells or plumes (Hindman et al. 2020).

The transient nature of these vorticity rings, coupled

with the small-scale down-flows that constitute them

and their location in polar regions, may make their de-

tection challenging. However, the potential existence of
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such vorticity rings in polar areas highlights the neces-

sity of expanded observational coverage of the Sun, to

probe the full spectrum of convective dynamics.

Because solar photospheric observations remain

mainly in the ecliptic plane (modulo the β0 angle of

the Sun with respect to the ecliptic plane), the precise

observations we can make of the Sun’s surface are con-

centrated in regions away from the poles. Acquisition

time for such observations is also limited by the solar

rotation, and not having a full coverage of the solar sur-

face limits techniques for inverting internal structure.

It would then be interesting to observe the Sun’s po-

lar regions and see if a signal from internal convective

columns or surface vorticity rings can be reported, some-

thing that has not been done yet. Unveiling the dynam-

ics of these features may provide insights into the com-

plex interplay between rotation, convection, and mag-

netism in the Sun. Such investigation could start with

observations of the Solar Orbiter mission during its out-

of-the-ecliptic phase, and potentially followed by other

missions (see e.g. Solaris Hassler et al. 2020, 4π-HeliOS

Raouafi et al. 2022).

Finally, most numerical MHD models of stellar and

planetary dynamo have reported the importance of

the buoyancy contribution, with the so-called quasi-

geostrophic Magneto-Archimedean-Coriolis (QG-MAC)

balance (Davidson 2013; Aubert et al. 2017; Gastine &

Wicht 2021; Zaire et al. 2022; Nataf & Schaeffer 2023).

However, our current setup and recent studies (Hotta

et al. 2022) suggest the need for a reduced buoyancy in

order to yields a prograde equator at unprecedentedly

high turbulent regimes. This questions the presence of

such a balance in the solar interior. Instead, a QG-MIC

could be a good candidate, with Inertia/advection re-

placing Archimede/buoyancy. This is a concept that we

aim to explore in future work.
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APPENDIX

A. NUMERICAL METHOD

In order to solve the equations governing the physics of stars, we use the ASH code (Anelastic Spherical Harmonic,

Clune et al. 1999; Miesch et al. 2000; Brun et al. 2004). The time resolution is provided by a semi-implicit Crank-

Nicholson method for the linear terms, and by an explicit Adams-Bashford method of order 2 for the non-linear

terms and the Coriolis term. The spatial resolution is provided by a pseudo-spectral method in spherical coordinates:

equations are solved by projection onto the spherical harmonics along the θ and ϕ directions, and with a finite difference

scheme in the radial direction. We choose a finite-difference radial resolution method for all the models discussed, to

ensure the numerical stability of this study, while significantly increasing the radial resolution at strategic locations

and keeping a limited number of points elsewhere. The strategic locations are the stable/convective zone transition,

where changes in the entropy gradient and convective overshoot occur, as well as the near-surface region, where strong

flux changes are expected as a result of our modifications on κrad. We report the specificities of each grid in Table A.2.
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A.1. Equations

This resolution is done entirely in the anelastic approximation (Ogura & Phillips 1962, Gough 1969, see also the

Appendix from DeRosa 2001 for a detailed derivation). It allows lifting the incompressibility assumption proposed by

methods like Boussinesq, without having to consider the sound waves (∂ρ/∂t = 0). This allows to keep the important

effects caused by the density stratification in the stellar interiors, while maintaining an acceptable CFL criterion. It is

then based on convective motions rather than on the speed of sound, allowing much larger time steps when the Mach

number is subsonic, and thus a reduced computation time for solar convective envelope modeling.

We further choose here to use the LBR formulation (Lantz-Braginsky-Roberts, Lantz 1992; Braginsky & Roberts

1995), which has the ability to effectively conserve energy in both unstable convective regions and stable radiative in-

teriors (Brown et al. 2012; Vasil et al. 2013). More especially, this formulation neglects interactions between fluctuating

pressure and stratification, by introducing a reduced pressure such as

∇ · (ρ̄v) = 0, (A1)

∂v

∂t
+ (v · ∇)v = −[∇ω +∇ω̄ + ω̄∇lnρ̄− g]− s

cP
g − 2Ω∗ × v − 1

ρ̄
∇ ·D, (A2)

ρ̄T̄
∂s

∂t
= −ρ̄T̄v ·∇(s̄+ s)−∇ · q+Φd, (A3)

We note the velocity field v = (vr, vθ, vϕ), the reduced pressure ω = P/ρ̄ and the energy flux q defined as Equation 3.

cP and g are respectively the heat capacity at constant pressure and the star’s gravity field, followed by Ω∗ = Ω∗êz
the angular velocity in the rotating frame, with êz as the unit vector oriented along the axis of rotation. D is the

viscous stress tensor defined in Equation 2, and Φd the dissipation term expressed as

Φd = Dij
∂vij
∂xj

= 2ρ̄ν

[
eijeij −

1

3
(∇ · v)2

]
, (A4)

where eij = 1/2(∂jvi + ∂ivj) is the stress tensor, with δi,j the Kronecker symbol. To close the system of equations,

we consider a perfect gas equation of state, i.e. P̄ = Rρ̄T̄ where R = cP (γ − 1)/γ and γ is the adiabatic exponent.

The linearization of thermodynamics variable under the anelastic assumption then gives

ρ

ρ̄
=
P

P̄
− T

T̄
=

P

γP̄
− s

cP
. (A5)

A.2. Numerical setup

To determine the one-dimensional mean state in model initialization, we first extract the entropy gradient ds̄/dr and

gravity g profiles from a solar reference model with the CESAM code (Morel 1997; Brun et al. 2002). The reference

density profile ρ̄ satisfying hydrostatic equilibrium as a solution is then obtained by using a Newton-Raphson method

on the following equation,
dρ̄

dr
+
g

γ
ρ̄2−γe

−γ s̄
cP +

ρ̄

cP

ds̄

dr
= 0. (A6)

We can then deduce the pressure profile P̄ and temperature profile T̄ via the equation of state A5, which gives us here

profiles presented in Figure 16.

In order to fully define the set of anelastic equations presented, we choose boundary conditions conserving angular

momentum. To this end, we choose them to be impenetrable and free of friction/torque at the top and bottom, such

that

vr =
∂

∂r

(vθ
r

)
=

∂

∂r

(vϕ
r

)
= 0|r=rtop,rbot

. (A7)

The energy flow is imposed via the entropy gradient, such that

∂s̄

∂r
= 1.34× 10−2|r=rbot

= 1.5× 10−7|r=rtop cm s−2K−1, (A8)

which further implies that the fluctuating entropy gradient ∂⟨s⟩/∂r is conserved at zero at the base and surface. As no

radiative zone is included in AS1 model, the bottom gradient entropy value is set to ∂s̄
∂r |r=rbot

= −7.5×10−8 cm s−2 K−1.
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Name Nr Nθ rbot rtop νtop κtop Nρ

(R⊙) (R⊙) (1012 cm2s−1) (1012 cm2s−1)

AS1 673 1024 0.72 0.9876 4.0 16 5.9

SBR97n035 2000 1536 0.5 0.9914 0.35 1.4 6.7

SBR50n1 2000 1024 0.5 0.9914 1.0 4.0 6.7

Table 2. Control parameters of the 3 solar models discussed. We fix their luminosity, and rotation rate in the solar regime,
maintaining a Prandlt number Pr = ν/κ = 1/4 in the whole domain. From the left, we list the name of the model, the radial and
latitudinal dimension of the simulated grid (for reminder Nϕ = 2Nθ), the lower (bot) and upper (top) radius of the simulated
domain, the viscosity and thermal conductivity prescribed at the top, as well as the density contrast Nρ = ln(ρ̄(rBCZ)/ρ̄(rtop))
considered. Considering a given structure, here the solar one, Nρ will directly be impacted by the radii where we decided to
crop the simulated domain. As a reminder, Nρ,⊙ = ln(ρ̄(rBCZ)/ρ̄(R⊙)) = 13.5 in the Sun’s convection zone, because the density
profile is decreasing steeply in the last Mm before reaching the photosphere. For the first model considered in this table, the
base of the convective zone (BCZ) is at rBCZ = rbot = 0.72 R⊙. For cases where rbot = 0.5 R⊙, a radiative zone is coupled and
rBCZ = 0.715 R⊙.

The number of radial grid points per density scale height is of the order of 100 close to the surface in both SBR97n035

and SBR50n1 models.

All diffusive coefficients are assumed to be stationary, spherically symmetrical and possess a radial dependence. The

viscosity profile ν is prescribed such as

ν(r) = νbot + νtopfstep(r), (A9)

with fstep(r) = (ρ̄/ρ̄top)
α[1− β]f(r),

where f(r) = 0.5(tanh((r − rt)/σt) + 1) and β = νbot/νtop.

We impose a viscosity contrast β = 2.5× 10−4 between the top of the convective zone and the bottom of the radiative

zone we simulate. This transition takes into account the additional effective diffusive transport brought by the mixing

of convective motions, and parameters are rt = 0.68 R⊙ and σt = 1.43 × 10−2 R⊙. The decay coefficient in the

convective zone is set at α = −1/3 and values of νtop are listed in Table A.2. The κ profile can then be deduced via the

Prandtl number Pr = ν/κ, which is kept here constant at 1/4 within a simulation and for the different models. The κ0
diffusive profile is localized near the surface, and adjusted to transport the energy flux out of the domain. It decreases

with distance from the surface, as enthalpy is transported by larger-scale convective cells. For both SBR97n035 and

SBR50n1, it is prescribed such as

κ0(r) = κ0,bot + κ0,topf(r)/(ρ̄T̄
ds̄

dr
), (A10)

where rt = 0.9957 R⊙ and σt = 2.87×10−3 R⊙ for the function f(r), κ0,bot = 1 cm2s−1 and κ0,top = 1.34×1012 cm2s−1.

For AS1 model, κ0 is prescribed such as

κ0(r) = [κ0,bot + α ∗ tanh((r − rtop)/σt)]/(1 + exp((rb − r)/σb)), (A11)

with α = (2 ∗ κ0,bot − κ0,top)/ tanh((rb − rtop)/σt),

where rb = 0.7184 R⊙, σb = 2.87× 10−2 R⊙, σt = 6× 10−4 R⊙, κ0,bot = 2× 105 cm2s−1 and κ0,top = 5× 1015 cm2s−1.

B. SPECTRAL DECOMPOSITION OF TRANSFERS EQUATIONS

In order to decompose the different transfer equations on every spatial scales of the system, we project the evolution

equations of the kinetic energy and the square of the entropy on the RST vector spherical harmonics basis, defined

from Rieutord (1987) and Mathis & Zahn (2005). This basis is indeed very practical for decomposing spectrally the

various operators in the problem.
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Figure 16. Radial profile of the mean density, pressure and temperature used as initial background state in the 3D models
of the present paper. Solid lines represent the 1D structure used in AS1 and dotted lines the structure for SBR97n035 and
SBR50n1.

B.1. Definitions

The RST basis is defined such that
Rm

l = Y m
l er

Sm
l = ∇⊥Y

m
l = ∂θY

m
l eθ +

1
sin θ∂φY

m
l eφ

Tm
l = ∇⊥ ×Rm

l = 1
sin θ∂φY

m
l eθ − ∂θY

m
l eφ,

(B12)

which have the following properties :∫
S

Rm1

l1
·
(
Rm2

l2

)∗
dΩ= δl1,l2δm1,m2

(B13)∫
S

Sm1

l1
·
(
Sm2

l2

)∗
dΩ=

∫
S

Tm1

l1
·
(
Tm2

l2

)∗
dΩ = l1(l1 + 1)δl1,l2δm1,m2 (B14)

with S the spherical shell surface and dΩ the solid angle. We also note (Sm
l )∗ = (−1)mSm

l as these relations are

easily directly derived from Laplace spherical harmonics definition:

Y m
l =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ. (B15)

Such a basis is then well suited for spectral decomposition of a vector field X(θ, ϕ) on the surface S of a sphere, which

can be expressed as

X =

∞∑
l=0

l∑
m=−l

Aℓ
mRm

l + Bℓ
mSm

l + Cℓ
mTm

l , (B16)

where Aℓ
m, Bℓ

m and Cℓ
m are the decomposition coefficient of X on vector of the RST basis.

B.2. Operators

The RST basis can then be used to write the various mathematical operators on a scalar field

ψ =
∑∞

l=0

∑l
m=−l ψ

l
mY

m
l , such as

∇ψ=

∞∑
l=0

l∑
m=−l

∂rψ
l
mRm

l +
ψl
m

r
Sm
l (B17)

∇ ·∇ψ=

∞∑
l=0

l∑
m=−l

∆lψ
l
mY

m
l (B18)
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where ∆l = ∂2rr +
2
r∂r −

l(l+1)
r2 . Now for a vector X =

∑∞
l=0

∑l
m=−l Al

mRm
l + Bl

mSm
l + Cl

mTm
l , we obtain

∇ ·X=

∞∑
l=0

l∑
m=−l

[
1

r2
∂r(r

2Al
m)− l(l + 1)

Bl
m

r

]
Y m
l (B19)

∇×X=

∞∑
l=0

l∑
m=−l

[
l(l + 1)

Cl
m

r

]
Rm

l +

[
1

r
∂r(rCl

m)

]
Sm
l +

[
Al

m

r
− 1

r
∂r(rBl

m)

]
Tm

l (B20)

∇2X=

∞∑
l=0

l∑
m=−l

[
∆lAl

m − 2

r2
(Al

m − l(l + 1)Bl
m)

]
Rm

l +

[
∆lBl

m + 2
Al

m

r2

]
Sm
l +

[
∆lCl

m

]
Tm

l . (B21)

We can explain here the general procedure for calculating an integral over these quantities, by illustrating the example

of computing the surface integral
∫
∂V

∇ ·X dΩ, such that

∫
∂V

∇ ·X dΩ=

∞∑
l=0

l∑
m=−l

∫
∂V

[
1

r2
∂r(r

2Al
m)− ℓ(ℓ+ 1)

Bl
m

r

]
Y m
ℓ dΩ (B22)

=

∞∑
l=0

l∑
m=−l

∫
∂V

1

r2
∂r(r

2Al
m)Y m

ℓ

√
4πY 0

0︸ ︷︷ ︸
=1

dΩ (B23)

=
√
4π

∞∑
l=0

l∑
m=−l

1

r2
∂r(r

2Al
m)

∫
∂V

Y m
ℓ Y 0

0 dΩ (B24)

=
√
4π

1

r2
∂r(r

2A0
0). (B25)

Using these tools, it is then possible to fully develop the spectral decomposition of the equations 15 and 16 as follows.

B.3. Kinetic energy evolution

It is first possible to decompose spatially the evolution of the kinetic energy shown in Equation 15 by considering

the spectrum of the velocity vector field vℓ over the RST basis. The equation for the evolution of radial kinetic energy

density EK
ℓ is then obtained by projecting the Navier-Stokes equation A2 on the RST basis, multiplying it by vℓ, and

then integrating over spherical surface S at a given radius r, such as

∂tE
K
ℓ =

∑
ℓ1,ℓ2

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2

[
Rℓ(ℓ1, ℓ2)

]
+ Cℓ(ℓ− 1, ℓ+ 1) +Hℓ + Bℓ + Vℓ, (B26)

where the various terms on the right-hand side are respectively the contribution of non-linear advection via the Reynolds

tensor, the impact of the Coriolis force, the pressure gradient, the buoyancy force, and the viscous contribution, defined

as follows

Rℓ(r, ℓ1, ℓ2) = ρ̄

∫
S

[vℓ1 ·∇(vℓ2)]ℓ · vℓdΩ, (B27)

Cℓ(r, ℓ− 1, ℓ+ 1) = −2ρ̄

∫
S

(Ω0 × vℓ−1 +Ω0 × vℓ+1)) · vℓdΩ, (B28)

Hℓ(r) = −(1− δℓ,0)

∫
S

∇Pℓ · vℓdΩ, (B29)

Bℓ(r) = (1− δℓ,0)

∫
S

ρgℓ · vℓdΩ, (B30)

Vℓ(r) = −
∫
S

(∇ · D)ℓ · vℓdΩ. (B31)

We refer the reader to Appendixes of Strugarek et al. (2013) and Strugarek et al. (2016a) for the detailed development

of each term. In Section 5.1.2, we consider a specific part of the Reynolds tensor B27, defined such as
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Rm=0
ℓ=3 (ℓ1,2) =

1

(2ℓ+ 1)Rm>0
ℓ

∑
ℓ2,1

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2
m1+m2=0;m1>0,m2>0

|Rℓ=3(ℓ1, ℓ2)|, (B32)

where Rm>0
ℓ =

∑
ℓ1,ℓ2

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2
m1+m2=0;m1>0,m2>0

Rℓ=3(ℓ1, ℓ2). (B33)

This term quantifies mean energy transfers between non-axisymmetric component of convective motions correlations

and the ℓ = 3 axisymmetric component of large-scale flows (here the differential rotation.)

B.4. Squared entropy evolution

A similar development can be done for the radial density of quadratic entropy ES
ℓ evolution shown in Equation 16,

by considering this time the spectral decomposition of the internal energy equation, multiplied by the spectrum of the

entropy scalar field Sℓ and integrated over the spherical surface S. This then yields to the following budget

∂tES
ℓ =

∑
ℓ1,ℓ2

|ℓ1−ℓ2|≤ℓ≤ℓ1+ℓ2

[
Aℓ(ℓ1, ℓ2)

]
+ Sb

ℓ + Tℓ +Kℓ + VS
ℓ +Q0δℓ,0, (B34)

where the various terms on the right-hand side are respectively the contribution of entropy advection, the advective

impact of the reference state s̄, radiative transfer, thermal dissipation, viscous dissipation, and a spherically symmetric

contribution. These terms are defined such as

Aℓ(r, ℓ1, ℓ2) =

∫
S

− [vℓ1 ·∇(sℓ2)]ℓ · sℓdΩ, (B35)

Sb
ℓ =

∫
S

−vℓ ·∇(s̄) · sℓdΩ, (B36)

Tℓ(r) =
1

ρ̄T̄

∫
S

∇ · [κradρ̄cP∇(Tℓ)] · sℓdΩ, (B37)

Kℓ(r) =
1

ρ̄T̄

∫
S

∇ ·
[
κρ̄T̄∇(sℓ)

]
· sℓdΩ, (B38)

VS
ℓ (r) =

2ν

T̄

∫
S

[
eijeij −

1

3
(∇ · v)2

]
ℓ

· sℓdΩ, (B39)

Q0(r) =

√
4π

ρ̄T̄

(
∇ ·

[
κradρ̄cP∇(T̄ ) + κ0ρ̄T̄∇(s̄+ ⟨s⟩)

]
· s0 + ρ̄ϵ · s0

)
, (B40)

where ⟨s⟩ = s0,0 is the spherical average of the specific entropy perturbation (ℓ = 0, m = 0).

C. COMPUTING THE CRITICAL RAYLEIGH NUMBER

Numerical experiments have been able to confirm key results from analytical works about rotating convection

(Chandrasekhar 1961) along the last decades (starting with Roberts 1968, Busse 1970, Gilman 1975, 1977). In

particular, it has been shown that characteristics of the convective instability, such as the temporal and spatial

frequency of the most unstable mode, as long as critical states, depend on the Taylor number Ta, quantifying the

amplitude of the rotational constraint by the Coriolis force over the one of the viscous dissipation (see Jones et al.

2009 and reference therein). In particular, Takehiro et al. (2020) recently confirmed that the critical Rayleigh number

scales such that Rac ∝ Ta2/3 for different anelastic numerical experiments (Jones et al. 2009; Brun et al. 2017). This

critical Rac value characterizes the critical state of the convective instability, which we aim at quantifying for our

models presented here.

Taking results from Takehiro et al. (2020), we compute the following linear regression Rac =

Rac,B17,⊙(Ω∗/Ω⊙)
1.74±0.19(M∗/M⊙)

−4.39±0.73, which yields Rac,⊙ = (2.8 ± 0.9) × 104 for a solar rotation rate

and mass in Brun et al. (2017) (B17) experiment. Similarly, we find a linear regression for the Taylor number
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Ta = TaB17,⊙(Ω∗/Ω⊙)
2.94±0.07(M∗/M⊙)

−7.54±0.26, giving TaB17,⊙ = (1.7 ± 0.2) × 105. Now using the scaling

Rac ∝ Ta2/3 to decipher Rac,⊙ values of our models, in which we decreased viscosity to increase the turbulence

degrees and hence increased Taylor numbers, we finally find Rac = 2.5 × 105, 9.9 × 106 and 2.5 × 106 for AS1,

SBR97n035 and SBR50n1 respectively (see Table 1).

D. ANGULAR MOMENTUM EVOLUTION AND TRANSPORT

In order to understand processes that redistribute angular momentum in the simulation, and more especially in

the bulk of the CZ, we can compute the evolution of the angular momentum. Following previous studies (see e.g.

Rüdiger 1989; Elliott et al. 2000; Brun et al. 2004; Käpylä et al. 2011b; Hotta et al. 2022), we can express the different

contributions by averaging the longitudinal component of the momentum Equation A2 in time and longitude (⟨⟩)

ρ̄
∂L
∂t

= τRS + τMC + τν , (D41)

with

τRS = −∇ · (ρ̄λ⟨vmvϕ⟩),
τMC = −∇ · (ρ̄⟨vm⟩L),
τν = −∇ · (−ρ̄νλ2∇Ω),

where L = λ(⟨vϕ⟩ + λΩ⊙) is the specific angular momentum, Ω = Ω⊙ + λ−1⟨vϕ⟩ is the total angular velocity and

λ = r sin θ. Then τRS, τRS and τν are the Reynolds stress, meridional flow and viscous contribution to angular

momentum transport respectively. We illustrate them in Figure 17 for both SBR97n035 (top row) and SBR50n1

(bottom row).

In both models, we can see fine structures in spatial fluctuations along with a negligible contribution of the viscosity

(τν , right column) due to the highly turbulent nature of the flow. The mirror trend between the Reynolds stress from

the turbulence (τRS, left column) and the component from the meridional flow (τMC, middle column) then indicate

that a stationary state has been reached (ρ̄∂L
∂t =

∑
τ ≃ 0). Our choice of anelastic approximation further imply that

we experience a low Mach number regime. This in turn ensures that ∇.(ρ̄.vm) ∼ 0 is approximately satisfied, which

finally leads to the following equation, known as gyroscopic pumping (Miesch & Hindman 2011; Featherstone & Miesch

2015)

ρ̄⟨vm⟩ ·∇L ∼ τRS + τν , (D42)

Gyroscopic pumping is a way of understanding which mechanism is sustaining the meridional flow. Hence, this

indicates that the Reynolds stress sustains the meridional circulation, as all other mechanisms (here the viscous one)

are negligible.

As we choose stress-free and torque free boundary conditions, no external torque is applied to the system and the

angular momentum is globally conserved. Looking at the expression of the different torques τ from Equation D41,

we see that they can be directly interpreted as the local deposition and extraction of angular momentum from a

corresponding flux. In Figure 17, the flux therefore extracts it from blue regions and deposits it in red regions. In the
anti-solar case (bottom row), the Reynolds stress from turbulence (left column) transfers the angular momentum from

regions close to the surface, as well as mid-latitude CZ-bulk, towards the polar regions and the BCZ at the equator,

leading then to the anti-solar profile. In the solar-rotating case, it extracts angular momentum from regions close to

the surface and deposits it in the bulk of the CZ and the equatorial part, helping to sustain the solar-like prograde

equator of SBR97n035. Interestingly, we see a noticeable deposition of angular momentum (red) from τRS in polar

regions, balanced subsequently by the meridional flow extracting it (blue in τMC). This means that it’s the meridional

circulation that helps to maintain the retrograde rotation of SBR97n035 poles.

E. POLAR DYNAMICS AND MIDDLE OF THE CONVECTION ZONE

As a complement of the analysis in Sections 3.4 and 4, we illustrate in Figure 19 the polar dynamics from the North-

Pole perspective and at the middle of the CZ (0.85 R⊙), and show in Figures 18 and 20 the polar dynamics at the

near-surface (0.99 R⊙) from the South-Pole perspective. All Figures illustrate the Sun-like rotating model SBR97n035

in left panels, and the anti-solar rotating one SBR50n1 in right panels. Figures 18 and 19 show radial velocity and

radial vorticity maps in top and bottom panels, respectively. Figure 20 illustrates the m = 1 mode extracted from vϕ
velocity fields.
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Figure 17. Angular momentum evolution in the solar-rotating case (SBR97n035, top) and the anti-solar case (SBR50n1,
bottom). The red (respect. blue) color means that angular momentum is deposited/increased (respect. extracted/decreased)
locally. The left, middle and right column show the contribution from the Reynolds stress, meridional flow and viscosity,
respectively.
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r/R = 0.99 SBR97n035

vr [m.s 1] 25 0 25

SBR50n1

vr [m.s 1] 50 0 50

r [ Hz] 25 0 25 r [ Hz]

 

50 0 50

Figure 18. South-Pole view of the near-surface dynamics (0.99 R⊙, 10 grid-points below the top) in SBR97n035 (left panels)
and SBR50n1 (right panels) models. Similarly to Figure 7, we show maps of the radial velocity vr and radial vorticity ωr on
top and bottom panels, respectively. The maximum value of a color bar corresponds to twice the standard deviation of the map
it corresponds to. Please note that all observations made in Section 3.4 also apply to this Figure, with the understanding that
”anti-clockwise” and ”red” mentions should be reversed to ”clockwise” and ”blue,” respectively, due to the sign inversion of the
Coriolis force when transitioning from one hemisphere to the other. Animations are available at doi:10.5281/zenodo.14650437
(Noraz 2025).

https://doi.org/10.5281/zenodo.14650437
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r/R = 0.85 SBR97n035

vr [m.s 1] 25 0 25

SBR50n1

vr [m.s 1] 100 0 100

r [ Hz] 10 0 10 r [ Hz]

 

25 0 25

Figure 19. Similar to Figures 7 and 18, North-Pole view, looking now at the middle of the convection zone r = 0.85 R⊙.
Animations are available at doi:10.5281/zenodo.14650437 (Noraz 2025).
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Popovas, A., Nordlund, Å., & Szydlarski, M. 2022, Global

MHD Simulations of the Solar Convective Zone Using a

Volleyball Mesh Decomposition. I. Pilot, arXiv.

https://arxiv.org/abs/2211.09564

Proxauf, B. 2021, PhD thesis, Georg-August-University

Göttingen, doi: 10.53846/goediss-8502

Raouafi, N. E., Raouafi, N., Hoeksema, J. T., et al. 2022, in

44th COSPAR Scientific Assembly. Held 16-24 July,

Vol. 44, 1530

Rast, M. P. 2020, in Dynamics of the Sun and Stars, ed.

M. J. P. F. G. Monteiro, R. A. Garćıa,
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Rüdiger, G. 1989, Differential Rotation and Stellar

Convection (Berlin, Boston: De Gruyter),

doi: doi:10.1515/9783112532126

Schaeffer, N. 2013, Geochemistry, Geophysics, Geosystems,

14, 751, doi: 10.1002/ggge.20071

Scheiner, C. 1630, Rosa Ursina (ETH-Bibliothek Zürich),
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